21 research outputs found

    Screening for cofactors in Roquin-mediated post-transcriptional gene regulation

    Get PDF

    Cell Surface Expression and Function of the Macromolecular C1 Complex on the Surface of Human Monocytes

    Get PDF
    The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance

    Dendritic cell lineage commitment is instructed by distinct cytokine signals

    Get PDF
    AbstractDendritic cells (DC) develop from hematopoietic stem cells, which is guided by instructive signals through cytokines. DC development progresses from multipotent progenitors (MPP) via common DC progenitors (CDP) into DC. Flt3 ligand (Flt3L) signaling via the Flt3/Stat3 pathway is of pivotal importance for DC development under steady state conditions. Additional factors produced during steady state or inflammation, such as TGF-β1 or GM-CSF, also influence the differentiation potential of MPP and CDP. Here, we studied how gp130, GM-CSF and TGF-β1 signaling influence DC lineage commitment from MPP to CDP and further into DC. We observed that activation of gp130 signaling promotes expansion of MPP. Additionally, gp130 signaling inhibited Flt3L-driven DC differentiation, but had little effect on GM-CSF-driven DC development. The inflammatory cytokine GM-CSF induces differentiation of MPP into inflammatory DC and blocks steady state DC development. Global transcriptome analysis revealed a GM-CSF-driven gene expression repertoire that primes MPP for differentiation into inflammatory DC. Finally, TGF-β1 induces expression of DC-lineage affiliated genes in MPP, including Flt3, Irf-4 and Irf-8. Under inflammatory conditions, however, the effect of TGF-β1 is altered: Flt3 is not upregulated, indicating that an inflammatory environment inhibits steady state DC development. Altogether, our data indicate that distinct cytokine signals produced during steady state or inflammation have a different outcome on DC lineage commitment and differentiation

    The effect of BSO on CAV20 protein translation, RNA replication and transencapsidation.

    No full text
    <p>(<b>A</b>) <i>In vivo </i><sup>35</sup>S labeling of CAV20-wt and CAV20-BSOr viral proteins in the absence and presence of BSO in HeLa H1 cells. Viral proteins were separated on SDS-polyacrylamide gels (12.5%), as described in <a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004052#s4" target="_blank">Materials and Methods</a>. (<b>B</b>) The genome structure of the CAV20 FLuc replicon used in the experiment is shown above. The FLuc coding sequence was used to replace the P1 domain of the polyprotein. RNA transcripts of the replicon were transfected into untreated or BSO-treated HeLa H1 cells either in the absence or presence of GnHCl (2 mM). Luciferase activity was measured at 9 hr post transfection. (<b>C</b>) CAV20 FLuc replicon RNA transcript was transfected into BSO-treated HeLa H1 cells either in the absence or presence of GnHCl. At 1 hr post-transfection the cells were superinfected either with wt or with CAV20-BSOr (VP3 Y97H) at a moi of 0.5. The cells were lysed at 6 hr post-infection and were then used to re-infect fresh HeLa H1 cells in the absence or presence of GnHCl.</p

    Genome structure of PV1 RNA and polyprotein processing.

    No full text
    <p>The PV1 genomic RNA contains a 5′NTR, a single open reading frame, a 3′NTR and poly (A) tail. The polyprotein, translated from a single open reading frame, has one structural (P1) and two nonstructural domains (P2, P3). The P1 domain is released from the polyprotein by 2A<sup>pro</sup>. Further processing of the P1 domain into VP0, VP3 and VP1 is by 3CD<sup>pro</sup>, followed by the maturation cleavage of VP0 into VP4 and VP2 by an unknown mechanism. The P2/P3 domains are processed by 3C<sup>pro</sup>/3CD<sup>pro</sup> to generate different precursors and mature nonstructural proteins.</p

    GSH protects PV1-wt and PV1-BSOr from heat inactivation.

    No full text
    <p>(<b>A</b>) Protection from heat inactivation of PV1-wt or PV1-BSOr by GSH. Purified PV1-wt or PV1-BSOr (VP3, Q178L) 3×10<sup>9</sup> PFU was incubated <i>in vitro</i> in PBS either in the absence or presence of various amounts of GSH for 25 min at 48°C. The amount of virus remaining after the incubation was determined by plaque assays. The virus titers obtained after heating without GSH for both viruses were taken as “1”. (<b>B</b>) Protection from heat inactivation of PV1-wt or PV1-BSOr by reducing agents or GSSG. PV1-wt or PV1-BSOr 3×10<sup>9</sup> PFU were incubated in PBS either in the absence or presence of various reducing agents (5 mM) or of GSSG (5 mM) (<a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004052#s4" target="_blank">Materials and Methods</a>). The virus titer obtained after heating without GSH for both viruses were taken as “1”.</p

    GSH directly interacts with capsid proteins of both PV1 and CAV20.

    No full text
    <p>(A) GSH-pull down assay of PV1-infected lysates. HeLa cells, untreated or BSO-treated, were infected with PV1-wt or PV1-BSOr (VP3 Q178L). (B) GSH-pull down assay of CAV20-infected lysates. HeLa cells, untreated or BSO-treated, were infected with CAV20-wt or CAV20-BSOr. The viral proteins were labeled with <sup>35</sup>S-Translabel from 4 to 5 hr post-infection and the cells were harvested. The viral proteins in an aliquot of the lysates were analysed on SDS-polyacrylamide (11.5%) gels (lane 1–4). Samples were loaded onto GSH Sepharose beads and the pulled down material was analyzed by SDS-PAGE (lane 5–8).</p
    corecore