18 research outputs found

    Quantitive analysis of electric vehicle flexibility : a data-driven approach

    Get PDF
    The electric vehicle (EV) flexibility, indicates to what extent the charging load can be coordinated (i.e., to flatten the load curve or to utilize renewable energy resources). However, such flexibility is neither well analyzed nor effectively quantified in literature. In this paper we fill this gap and offer an extensive analysis of the flexibility characteristics of 390k EV charging sessions and propose measures to quantize their flexibility exploitation. Our contributions include: (1) characterization of the EV charging behavior by clustering the arrival and departure time combinations that leads to the identification of type of EV charging behavior, (2) in-depth analysis of the characteristics of the charging sessions in each behavioral cluster and investigation of the influence of weekdays and seasonal changes on those characteristics including arrival, sojourn and idle times, and (3) proposing measures and an algorithm to quantitatively analyze how much flexibility (in terms of duration and amount) is used at various times of a day, for two representative scenarios. Understanding the characteristics of that flexibility (e.g., amount, time and duration of availability) and when it is used (in terms of both duration and amount) helps to develop more realistic price and incentive schemes in DR algorithms to efficiently exploit the offered flexibility or to estimate when to stimulate additional flexibility. (C) 2017 Elsevier Ltd. All rights reserved

    Quantifying flexibility in EV charging as DR potential : analysis of two real-world data sets

    Get PDF
    The increasing adoption of electric vehicles (EVs) presents both challenges and opportunities for the power grid, especially for distribution system operators (DSOs). The demand represented by EVs can be significant, but on the other hand, sojourn times of EVs could be longer than the time required to charge their batteries to the desired level (e.g., to cover the next trip). The latter observation means that the electrical load from EVs is characterized by a certain level of flexibility, which could be exploited for example in demand response (DR) approaches (e.g., to balance generation from renewable energy sources). This paper analyzes two data sets, one from a charging-at-home field trial in Flanders (about 8.5k charging sessions) and another from a large-scale EV public charging pole deployment in The Netherlands (more than 1M sessions). We rigorously analyze the collected data and quantify aforementioned flexibility: (1) we characterize the EV charging behavior by clustering the arrival and departure time combinations, identifying three behaviors (charging near home, charging near work, and park to charge), (2) we fit statistical models for the sojourn time, and flexibility (i.e., non-charging idle time) for each type of observed behavior, and (3) quantify the the potential of DR exploitation as the maximal load that could be achieved by coordinating EV charging for a given time of day t, continuously until t vertical bar Delt

    The role of asymmetric prediction losses in smart charging of electric vehicles

    Get PDF
    Climate change prompts humanity to look for decarbonisation opportunities, and a viable option is to supply electric vehicles with renewable energy. The stochastic nature of charging demand and renewable generation requires intelligent charging driven by predictions of charging behaviour. The conventional prediction models of charging behaviour usually minimise the quadratic loss function. Moreover, the adequacy of predictions is almost solely evaluated by accuracy measures, disregarding the consequences of prediction losses in an application context. Here, we study the role of asymmetric prediction losses which enable balancing the over- and under-predictions and adjust predictions to smart charging algorithms. Using the main classes of machine learning methods, we trained prediction models of the connection duration and compared their performance for various asymmetries of the loss function. In addition, we proposed a methodological approach to quantify the consequences of prediction losses on the performance of selected archetypal smart charging schemes. In concrete situations, we demonstrated that an appropriately selected degree of the loss function asymmetry is crucial as it almost doubles the price range where the smart charging is beneficial, and increases the extent to which the charging demand is satisfied up to 40%. Additionally, the proposed methods improve charging fairness since the distribution of unmet charging demand across vehicles becomes more homogeneous.IA4TES MIA.2021.M04.000

    Prediction of availability and charging rate at charging stations for electric vehicles

    No full text
    To enable better smart charging solutions, this paper investigates the day-ahead probabilistic forecasting of the availability and the charging rate at charging stations for plug-in electric vehicles. Generalized linear models with logistic link functions are at the core of both forecast scenarios. Moreover, the availability forecast at a charging point is simply a binomial problem, whereas the charging rate forecast is handled via an ordered logistic model after categorizing the feasible range of values. These two scenarios are evaluated on real data collected from two representatives of the most occupied charging points in the Netherlands, with the focus of the analysis kept at the selection of essential regressors. Based on the ranked probability scores associated with the day-ahead forecasts generated for the last nine months of 2015, it is concluded that the usefulness of predictive models depends highly on the charging station. When contributing substantially to performance, such models possess a simple structure with a few basic lagged and indicator variables

    Assessment of public charging infrastructure push and pull rollout strategies: the case of the Netherlands

    No full text
    Over recent years, numbers of electric vehicles (EVs) have shown a strong growth and sales are projected to continue to grow. For facilitating charging possibilities for EVs typically two rollout strategies have been applied; demand-driven and strategic rollout. This study focuses on determining the differences in performance metrics of the two rollout strategies by first defining key performance metrics. Thereafter, the root causes of performance differences between the two rollout strategies are investigated. This study analyzes charging data of 1,007,137 transactions on 1742 different CPs by use of 53,850 unique charging cards. This research concludes that demand-driven CPs outperform strategic CPs on weekly energy transfer and connection duration, while strategic CPs outperform their demand-driven counterparts on charging time ratio. Regarding users facilitated, there is a significant change in performance after massive EV-uptake. The root cause analysis shows effects of EV uptake and user type composition on the differences in performance metrics. This research concludes with implications for policy makers regarding an optimal portfolio of rollout strategies

    Begriffserläuterungen

    No full text

    An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations

    No full text
    Transportation electrification is a valid option for supporting decarbonization efforts but, at the same time, the growing number of electric vehicles will produce new and unpredictable load conditions for the electrical networks. Accurate electric vehicle load forecasting becomes essential to reduce adverse effects of electric vehicle integration into the grid. In this paper, a methodology dedicated to probabilistic electric vehicle load forecasting for different geographic regions is presented. The hierarchical approach is applied to decompose the problem into sub-problems at low-level regions, which are resolved through standard probabilistic models such as gradient boosted regression trees, quantile regression forests and quantile regression neural networks, coupled with principal component analysis to reduce the dimensionality of the sub-problems. The hierarchical perspective is then finalized to forecast the aggregate load at a high-level geographic region through an ensemble methodology based on a penalized linear quantile regression model. This paper brings, as relevant contributions, the development of hierarchical probabilistic forecasting framework, its comparison with non-hierarchical frameworks, and the assessment of the role of data dimensionality refduction. Extensive experimental results based on actual electric vehicle load data are presented which confirm that the hierarchical approaches increase the skill of probabilistic forecasts up to 9.5% compared with non-hierarchical approaches
    corecore