57 research outputs found

    Osteosarcoma: Current status of immunotherapy and future trends (Review)

    Get PDF
    Osteosarcoma is the most common primary bone tumor and represents a major therapeutic challenge in medical oncology. While the use of aggressive chemotherapy has drastically improved the prognosis of the patients with non-metastatic osteosarcomas, the very poor prognosis of patients with metastasis have led to the exploration of new, more effective and less toxic treatments, such as immunotherapy for curing osteosarcoma. Compared to the numerous reports describing successful immunotherapy for other solid tumors, the number of reports concerning immunotherapy for osteosarcoma is low. However, this therapeutic strategy opens new areas for the treatment of osteosarcoma. In this review, the reasons for delay and all elements essential to develop immunotherapy concerning osteosarcoma are defined. Several pieces of evidence strongly support the potential capability of new therapies such as cellular therapy and gene therapy to eradicate osteosarcoma. Thus, clinical human trials using peptides, cytokines and dendritic cells have been performed. Tumor-infiltrating lymphocytes and some tumor antigens have been identified in osteosarcoma and resulted in an important breakthrough in cellular immunotherapy. Also, RANKL/RANK/OPG, the key regulator of bone metabolism, is a hot spot in this field as therapeutic tools. Immunotherapy for osteosarcomas has great potential, promising improvement in the survival rate and better quality of life for the patients

    Imatinib Mesylate Exerts Anti-Proliferative Effects on Osteosarcoma Cells and Inhibits the Tumour Growth in Immunocompetent Murine Models

    Get PDF
    Osteosarcoma is the most common primary malignant bone tumour characterized by osteoid production and/or osteolytic lesions of bone. A lack of response to chemotherapeutic treatments shows the importance of exploring new therapeutic methods. Imatinib mesylate (Gleevec, Novartis Pharma), a tyrosine kinase inhibitor, was originally developed for the treatment of chronic myeloid leukemia. Several studies revealed that imatinib mesylate inhibits osteoclast differentiation through the M-CSFR pathway and activates osteoblast differentiation through PDGFR pathway, two key cells involved in the vicious cycle controlling the tumour development. The present study investigated the in vitro effects of imatinib mesylate on the proliferation, apoptosis, cell cycle, and migration ability of five osteosarcoma cell lines (human: MG-63, HOS; rat: OSRGA; mice: MOS-J, POS-1). Imatinib mesylate was also assessed as a curative and preventive treatment in two syngenic osteosarcoma models: MOS-J (mixed osteoblastic/osteolytic osteosarcoma) and POS-1 (undifferentiated osteosarcoma). Imatinib mesylate exhibited a dose-dependent anti-proliferative effect in all cell lines studied. The drug induced a G0/G1 cell cycle arrest in most cell lines, except for POS-1 and HOS cells that were blocked in the S phase. In addition, imatinib mesylate induced cell death and strongly inhibited osteosarcoma cell migration. In the MOS-J osteosarcoma model, oral administration of imatinib mesylate significantly inhibited the tumour development in both preventive and curative approaches. A phospho-receptor tyrosine kinase array kit revealed that PDGFRα, among 7 other receptors (PDFGFRβ, Axl, RYK, EGFR, EphA2 and 10, IGF1R), appears as one of the main molecular targets for imatinib mesylate. In the light of the present study and the literature, it would be particularly interesting to revisit therapeutic evaluation of imatinib mesylate in osteosarcoma according to the tyrosine-kinase receptor status of patients

    Research ethics in an unethical world: the politics and morality of engaged research

    Get PDF
    This article explores ethical dilemmas in researching the world of work. Recent contributions to WES have highlighted challenges for engaged research. Based on the emancipatory epistemologies of Bourdieu, Gramsci and Burawoy, the authors examine moral challenges in workplace fieldwork, question the assumptions of mainstream ethics discourses and seek to identify an alternative approach. Instead of an ethics premised on a priori, universal precepts that treasures academic neutrality, this article recognises a morality that responds to the social context of research with participation and commitment. The reflection in this study is based on fieldwork conducted in the former Soviet Union. Transformation societies present challenges to participatory ethnography but simultaneously provide considerable opportunities for developing an ethics of truth. An approach that can guide engaged researchers through social conflict’s ‘messy’ reality should hinge on loyalty to the emancipation struggles of those engaged in it

    Mifamurtide for the treatment of nonmetastatic osteosarcoma

    Get PDF
    International audienceINTRODUCTION: The standard treatment for osteosarcoma requires both macroscopic surgical wide resection and postoperative multi-drug chemotherapy in neoadjuvant and adjuvant settings. However, the 5-year event-free survival has remained at a plateau of 60-70% of patients with nonmetastatic osteosarcoma for more than 30 years. AREAS COVERED: Mifamurtide (liposomal muramyl tripeptide phosphatidylethanolamine; L-MTP-PE) is a new agent. L-MTP-PE is a nonspecific immunomodulator, which is a synthetic analog of a component of bacterial cell walls. L-MTP-PE activates macrophages and monocytes as a potent activator of immune response in addition to standard chemotherapy. It also improves the overall survival from 70 to 78% and results in a one-third reduction in the risk of death from osteosarcoma. This review summarizes the most recent findings about L-MTP-PE and its therapeutic application for nonmetastatic osteosarcoma. EXPERT OPINION: Recently, L-MTP-PE has been approved in Europe for the treatment of nonmetastatic osteosarcoma with chemotherapy. L-MTP-PE in combination with traditional treatment is expected to go mainstream and to be beneficial for patients with osteosarcoma. Information about potential benefit regarding mifamurtide use in the neoadjuvant setting (i.e., before surgery) and/or usefulness of L-MTP-PE in metastatic in relapsed and metastatic osteosarcoma requires analysis of expanded access and/or future clinical trials of L-MTP-PE in high-burden and low-burden situations

    mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: Bi-functional compounds for the treatment of bone tumours

    No full text
    N-BP, rapamycin and its derivatives have been originally developed respectively as anti-resorptive and anti-fungal agents. In fact, in vitro and in vivo experiments demonstrated that these compounds are multi-functional molecules exerting their effects on tumour cell growth and bone remodelling. The major challenge in treating cancer relates to mutations in key genes such as p53, Rb or proteins affecting caspase signalling carried by many tumour cells. Whether nitrogen containing bisphosphonates (N-BP) are potent bone inhibitors, they also inhibit tumour cell proliferation and increase atypical apoptosis of bone tumour cells regardless of the p53 and Rb status. N-BP may be then considered as effective therapeutic agents in clinical trials of bone tumours. Rapamycin and its derivatives inhibit mTOR dependent mRNA translation both in osteoclasts and tumour cells. Cellular physiological mechanisms regulated by mTOR integrate many environmental parameters including growth factors, hormones, cytokines, amino acids, energy availability and cellular stresses that are coupled with cell cycle progression and cell growth. Rapamycin and its derivatives as well as N-BP must be considered as bi-(multi) functional molecules affecting simultaneously bone and tumour metabolisms. The present survey describes these two molecular families and discusses their therapeutic interests for primary bone tumours and bone metastases. - See more at: http://www.eurekaselect.com/59310/article#sthash.w5Zj9y1s.dpu

    Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status

    No full text
    The molecular mechanisms responsible for the cellular effects of the nitrogen-containing bisphosphonate zoledronic acid (Zol) were assessed on several osteosarcoma cell lines differing in their p53 and retinoblastoma (Rb) status. Zol inhibited cell proliferation and increased atypical apoptosis. The Zol effects on proliferation were due to cell cycle arrest in S and G2/M phases subsequent to the activation of the intra-S DNA damage checkpoint with an increase in P-ATR, P-chk1, Wee1, and P-cdc2 levels and a decrease in cdc25c, regardless of the p53 and Rb status. In addition, the atypic apoptosis induced by Zol was independent of caspase activation, and it was characterized by nuclear alterations, increased Bax expression, and reduced Bcl-2 level. Furthermore, mitochondrial permeability was up-regulated by Zol independently of p53 in association with the translocation of apoptosis-inducing factor (AIF) and endonuclease-G (EndoG). Zol also disturbed cytoskeletal organization and cell junctions and inhibited cell migration and phosphorylation of focal adhesion kinases. The main difficulty encountered in treating cancer relates to mutations in key genes such as p53, Rb, or proteins affecting caspase signaling carried by many tumor cells. We have demonstrated for the first time that zoledronic acid activated the DNA damage S-phase checkpoint and the mitochondrial pathway via AIF and EndoG translocation, and it inhibited cell proliferation and induced cell death, bypassing these potentials mutations. Therefore, zoledronic acid may be considered as an effective therapeutic agent in clinical trials of osteosarcoma in which mutation for p53 and Rb very often occur, and where current treatment with traditional chemotherapeutic agents is ineffective

    Therapeutic Approach of Primary Bone Tumours by Bisphosphonates

    No full text
    Bone tumours can be dissociated in two main categories: i) primary bone tumours (benign or malignant) including mainly osteosarcoma and other sarcomas. ii) and giant cell tumour and bone metastases originate from others cancer (Breast, prostate, kidney cancer, etc). These tumours are able to destroy or/and induce a new calcified matrix. However, the first step of bone tumour development is associated with an induction of bone resorption and the establishment of a vicious cycle between the osteoclasts and the tumour growth. Indeed, bone resorption contributes to the pathogenesis of bone tumour by the release of cytokines (IL6, TNFα) which govern the bone tumours development and which are trapped into the bone matrix. Bisphosphonates (BPs) are chemical compounds of P-C-P structure with a high affinity for bone hydroxyapatite crystals. Thus, they have been used as a carrier for radio nucleotides to develop novel approaches of bone imaging. BPs exert also indirect anti-tumour activities in vivo. Indeed, BPs directly interfere with the bone microenvironment and target osteoclasts, endothelial cells and immune cells (tumour-associated macrophages, γ9δ2 T cells). BPs induce tumour cell death in vitro and same activity is suspected in vivo. The present review summarizes the mechanisms of actions of BPs as well as their clinical interests in bone primary tumours

    NVP-BEZ235, a dual PI3K/mTOR inhibitor, inhibits osteosarcoma cell proliferation and tumor development in vivo with an improved survival rate

    No full text
    Despite recent improvements in chemotherapy and surgery, the problem of non-response osteosarcoma to chemotherapy remains, and is a parameter that is critical for prognosis. The present work investigated the therapeutic value of NVP-BEZ235, a dual class I PI3K/mTOR inhibitor. NVP-BEZ235 inhibited osteosarcoma cell proliferation by inducing G0/G1 cell cycle arrest with no caspase activation. In murine pre-clinical models, NVP-BEZ235 significantly slowed down tumor progression and ectopic tumor bone formation with decreased numbers of Ki67+ cells and reduced tumor vasculature. Finally, NVP-BEZ235 considerably improved the survival rate of mice with osteosarcoma. Taken together, the results of the present work show that NVP-BEZ235 exhibits therapeutic interest in osteosarcoma and may be a promising adjuvant drug for bone sarcomas
    • …
    corecore