4 research outputs found

    Synthesis, structure, magnetism, and high temperature thermoelectric properties of Ge doped Yb_(14)MnSb_(11)

    Get PDF
    The Zintl phase Yb_(14)MnSb_(11) was successfully doped with Ge utilizing a tin flux technique. The stoichiometry was determined by microprobe analysis to be Yb_(13.99(14))Mn_(1.05(5))Sb_(10.89(16))Ge_(0.06(3)). This was the maximum amount of Ge that could be incorporated into the structure via flux synthesis regardless of the amount included in the reaction. Single crystal X-ray diffraction could not unambiguously determine the site occupancy for Ge. Bond lengths varied by about 1% or less, compared with the undoped structure, suggesting that the small amount of Ge dopant does not significantly perturb the structure. Differential scanning calorimetry/thermogravimetry (DSC/TG) show that the doped compound's melting point is greater than 1200 K. The electrical resistivity and magnetism are virtually unchanged from the parent material, suggesting that Yb is present as Yb^(2+) and that the Ge dopant has little effect on the magnetic structure. At 900 K the resistivity and Seebeck coefficient decrease resulting in a zT of 0.45 at 1100 K, significantly lower than the undoped compound

    Flux growth and structure of two compounds with the EuIn2P2 structure type, AIn2P2 (A = Ca and Sr), and a new structure type, BaIn2P2.

    No full text
    Single crystals of the new Zintl phases AIn2P2 [A = Ca (calcium indium phosphide), Sr (strontium indium phosphide) and Ba (barium indium phosphide)] have been synthesized from a reactive indium flux. CaIn2P2 and SrIn2P2 are isostructural with EuIn2P2 and crystallize in the space group P63/mmc. The alkaline earth cations A are located at a site with 3m symmetry; In and P are located at sites with 3m symmetry. The structure type consists of layers of A2+ cations separated by [In2P2]2- anions that contain [In2P6] eclipsed ethane-like units that are further connected by shared P atoms. This yields a double layer of six-membered rings in which the In-In bonds are parallel to the c axis and to one another. BaIn2P2 crystallizes in a new structure type in the space group P2(1)/m with Z = 4, with all atoms residing on sites of mirror symmetry. The structure contains layers of Ba2+ cations separated by [In2P2]2- layers of staggered [In2P6] units that form a mixture of four-, five- and six-membered rings. As a consequence of this more complicated layered structure, both the steric and electronic requirements of the large Ba2+ cation are met
    corecore