31 research outputs found

    Mammal species composition and habitat associations in a commercial forest and mixed-plantation landscape

    Get PDF
    Commercial forest plantations of fast-growing species have been established globally to meet increasing demands for timber, pulpwood, and other wood products. Industrial plantations may contribute to tropical forest conservation by reducing exploitation of primary and secondary natural forests. Whether such plantations can support critical elements of biodiversity, including provision of habitat and movement corridors for species of conservation concern, is an important question in Southeast Asia. Our objectives were to investigate relationships between habitat gradients and community attributes of medium-sized to large mammals in a mixed plantation mosaic in Bengkoka Peninsula, Sabah, East Malaysia. Data on mammals were collected using 59 remote camera stations deployed for a minimum of 21 days (24-hour sampling occasions) in three major land-use types: natural forest, Acacia plantations, and non-Acacia plantations (oil palm, rubber, young Eucalyptus pellita). We used sample-based rarefaction to evaluate variation in species richness with land use. We used generalized linear models and ordination analyses to evaluate whether variation in mammal detections and species composition was associated with habitat gradients. We recorded >22 mammal species over 1572 sampling occasions. Natural forest area was positively associated with mammal species richness and detections of threatened mammals. Overall detections of mammals increased with decreasing elevation, but decreased within, and close to, Acacia plantations. Detections of threatened mammals increased with greater proportions of natural forest and Acacia and increasing proximity to roads. Sample-based rarefaction indicated that species richness of mammals in Acacia and natural forest was considerably higher than observed. Both natural forest and Acacia plantations shared similar values for species richness and diversity, but non-Acacia plantations scored lower in both metrics. Mammal species composition differed among different types of land use. Smaller generalists used non-Acacia plantation forests. A variety of other mammals including some threatened species used natural forest, Acacia, or a combination of the two. Acacia plantations possess attributes supporting a diversity of mammal species, including those we defined as threatened based on IUCN criteria. However, this is likely a function of the habitat mosaic with natural forest in the study area and the mangrove forests on the fringes of the peninsula serving as refuges of mammal diversity. Retention and restoration of natural and mangrove forests may therefore enhance the conservation potential of industrial Acacia plantations. Additionally, controlled road access in conjunction with anti-poaching operations and strengthening public awareness are essential to reduce the threat of overexploitation

    A low-cost, hands-on module to characterize antimicrobial compounds using an interdisciplinary, biophysical approach.

    Get PDF
    We have developed a hands-on experimental module that combines biology experiments with a physics-based analytical model in order to characterize antimicrobial compounds. To understand antibiotic resistance, participants perform a disc diffusion assay to test the antimicrobial activity of different compounds and then apply a diffusion-based analytical model to gain insights into the behavior of the active antimicrobial component. In our experience, this module was robust, reproducible, and cost-effective, suggesting that it could be implemented in diverse settings such as undergraduate research, STEM (science, technology, engineering, and math) camps, school programs, and laboratory training workshops. By providing valuable interdisciplinary research experience in science outreach and education initiatives, this module addresses the paucity of structured training or education programs that integrate diverse scientific fields. Its low-cost requirements make it especially suitable for use in resource-limited settings

    Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture:an overview

    No full text
    Algal bioproducts are of growing interest to agriculture because of their biodegradable nature, ability to restore soil fertility, and capacity for plant growth regulation, nitrogen fixation, and carbon sequestration. Plants respond to a suite of growth hormones; auxins present in algal extracts or secreted exogenously by living algae may be partially responsible for the stimulation of plant growth. Auxins are a major class of phytohormones that influence plant growth and development. The roles of auxins in algae and in plants are well described, but studies on the role of auxins in plant-algae interactions remain scarce. This review summarizes the body of knowledge on the production of auxins and their phsiological roles in seaweeds, cyanobacteria, and microalgae. Common and differential auxin-associated phenotypes of these algae, including the effect of growth conditions on their auxin production, are also described. Potential mechanisms by which auxins from algae mediate plant development at both phenotypic and molecular levels are also provided. Algal-derived auxins are an environmentally sustainable option for promoting plant growth and yield, but knowledge of their precise mechanisms of action is still rudimentary. Elucidating the pathways by which algal auxins stimulate plant responses and the means by which key environmental factors influence those pathways will help to harness the full potential of algal-derived auxins for agricultural development and resource conservation

    Correction to: Regulation of algal and cyanobacterial auxin production, physiology, and application in agriculture: an overview (Journal of Applied Phycology, (2021), 10.1007/s10811-021-02475-3)

    No full text
    The original version of this article unfortunately contained a mistake. The spelling of the word "physiological" in the Abstract was misspelled as "phsiological”. The original article has been corrected. © Springer Nature B.V. 202
    corecore