163 research outputs found

    Liquid interface evolution of polyhedral-like graphene

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.Centrifugation of the graphene oxide mediated Pickering emulsion results in transforming spheroidal toluene droplets into irregular polyhedral shapes, which can be preserved into a solid three-dimensional polyhedral-like graphene oxide network featuring facets and sharp edges, using a freeze-drying strategy

    Rapid protein immobilization for thin film continuous flow biocatalysis

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis

    Photoredox catalysis under shear using thin film vortex microfluidics

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.A microfluidic vortex fluidic device (VFD) operating in either confined or continuous mode is effective in high yielding photoredox reactions involving Rose Bengal, with short reaction times. This processing can be translated to multi-components reactions, also with significantly reduced processing times relative to batch processing and channel microfluidic processing, with comparable or improved yields

    Amphiphilic graphene oxide stabilisation of hexagonal BN and MoS2 sheets

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.A simple and scalable method has been developed for directly forming water-dispersible van der Waals solids involving mixing aqueous solution of graphene oxide (GO) with hexagonal boron nitride (BN) or molybdenum disulphide (MoS2) in N-methylpyrrolidone. The GO acts as an amphiphile in stabilising the colloidal solutions of the heterolaminar material in water

    Neutron imaging and modelling inclined vortex driven thin films.

    Get PDF
    The vortex fluidic device (VFD) is a thin film microfluidic platform which has a wide range of applications in synthesis and other areas of science, and it is important to understand the nature of the thin film of liquid in its inclined rapidly rotating tube. Neutron imaging has been used to determine the thickness of the film in a quartz tube with its shape modelled mathematically, showing good agreement between the model and experiments. The resultant equations are useful for studying VFD mediated processing in general, for which the optimal tilt angle of the tube is typically 45°. This includes its utility for the intelligent scale-up of organic syntheses, as demonstrated in the present study by the scaling up of an imine and amide synthesis to >1 g/min

    Unravelling the structure of the C60 and p-But-calix[8]arene complex

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.The structure of the C60 and p-But-calix[8]arene complex has been reinvestigated, showing an unprecedented continuous layered tetragonal array of fullerenes encapsulated by calixarenes. Electron diffraction data revealed the tetragonal symmetry, with a stepped structure observed by AFM and SEM, and the thickness of the basal plane was measured by XRD, as 2 nm. The molecular simulated arrangement of fullerenes accounts for the ability to take up to ca. 11% of fullerenes C70 in place of the smaller fullerene

    Encapsulation of Magnetic Nanoparticles with Biopolymer for Biomedical Application

    Get PDF
    Abstract—Magnetite nanoparticles were synthesized by coprecipitation of Fe2+ and Fe3+ with NH4OH using Spinning Disc Processing (SDP). Chitosan was then coated on the surface of magnetite nanoparticles using SDP. FTIR study and zeta potential measurement confirmed the absorption of chitosan unto the surface of magnetite nanoparticles. Transmission electron microscope (TEM) image showed that the particle sizes are in the range 10 – 200 nm

    Azide-alkyne cycloadditions in a vortex fluidic device: Enhanced "on water" effects and catalysis in flow

    Get PDF
    The Vortex Fluidic Device is a flow reactor that processes reactions in thin films. Running the metal-free azide-alkyne cycloaddition in this reactor revealed a dramatic enhancement of the "on water"effect. For the copper-catalyzed azide-alkyne cycloaddition, stainless steel or copper jet feeds were effective reservoirs of active copper catalyst.Fil: Oksdath Mansilla, Gabriela. Flinders University.; Australia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Kucera, Renata L.. Flinders University.; AustraliaFil: Chalker, Justin Mark. Flinders University.; AustraliaFil: Raston, Colin Llewellyn. Flinders University.; Australi

    Vortex fluidics-mediated DNA rescue from formalin-fixed museum specimens.

    Get PDF
    DNA from formalin-preserved tissue could unlock a vast repository of genetic information stored in museums worldwide. However, formaldehyde crosslinks proteins and DNA, and prevents ready amplification and DNA sequencing. Formaldehyde acylation also fragments the DNA. Treatment with proteinase K proteolyzes crosslinked proteins to rescue the DNA, though the process is quite slow. To reduce processing time and improve rescue efficiency, we applied the mechanical energy of a vortex fluidic device (VFD) to drive the catalytic activity of proteinase K and recover DNA from American lobster tissue (Homarus americanus) fixed in 3.7% formalin for >1-year. A scan of VFD rotational speeds identified the optimal rotational speed for recovery of PCR-amplifiable DNA and while 500+ base pairs were sequenced, shorter read lengths were more consistently obtained. This VFD-based method also effectively recovered DNA from formalin-preserved samples. The results provide a roadmap for exploring DNA from millions of historical and even extinct species

    Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/A modular p-phosphonated calix[4]arene vesicle (PCV) loaded with paclitaxel (PTX) and conjugated with folic acid as a cancer targeting ligand has been prepared using a thin film-sonication method. It has a pH-responsive capacity to trigger the release of the encapsulated PTX payload under mildly acidic conditions. PTX-loaded PCV conjugated with alkyne-modified PEG-folic acid ligands prepared via click ligation (fP-PCVPTX) has enhanced potency against folate receptor (FR)-positive SKOV-3 ovarian tumour cells over FR-negative A549 lung tumour cells. Moreover, fP-PCVPTX is also four times more potent than the non-targeting PCVPTX platform towards SKOV-3 cells. Overall, as a delivery platform the PCVs have the potential to enhance efficacy of anticancer drugs by targeting a chemotherapeutic payload specifically to tumours and triggering the release of the encapsulated drug in the vicinity of cancer cells
    corecore