5,438 research outputs found

    Variability of the Accretion Stream in the Eclipsing Polar EP Dra

    Get PDF
    We present the first high time resolution light curves for six eclipses of the magnetic cataclysmic variable EP Dra, taken using the superconducting tunnel junction imager S-Cam2. The system shows a varying eclipse profile between consecutive eclipses over the two nights of observation. We attribute the variable stream eclipse after accretion region ingress to a variation in the amount and location of bright material in the accretion stream. This material creates an accretion curtain as it is threaded by many field lines along the accretion stream trajectory. We identify this as the cause of absorption evident in the light curves when the system is in a high accretion state. We do not see direct evidence in the light curves for an accretion spot on the white dwarf; however, the variation of the stream brightness with the brightness of the rapid decline in flux at eclipse ingress indicates the presence of some form of accretion region. This accretion region is most likely located at high colatitude on the white dwarf surface, forming an arc shape at the foot points of the many field lines channeling the accretion curtain.Comment: Accepted for publication in MNRAS (7 pages

    All simple groups with order from 1 million to 5 million are efficient

    Get PDF
    There is much interest in finding short presentations for the finite simple groups. Indeed it has been suggested that all these groups are efficient in a technical sense. In previous papers we produced nice efficient presentations for all except one of the simple groups with order less than one million. Here we show that all simple groups with order between 1 million and 5 million are efficient by giving efficient presentations for all of them. Apart from some linear groups these results are all new. We also show that some covering groups and some larger simple groups are efficient We make substantial use of systems for computational group theory and, in particular, of computer implementations of coset enumeration to find and verify our presentations

    Modelling the spin pulse profile of the isolated neutron star RX J07204--3125 observed with XMM-Newton

    Get PDF
    We model the spin pulse intensity and hardness ratio profiles of the isolated neutron star RXJ0720.4--3125 using XMM-Newton data. The observed variation is approximately sinusoidal with a peak-to-peak amplitude of 15%, and the hardness ratio is softest slightly before flux maximum. By using polar cap models we are able to derive maximum polar cap sizes and acceptable viewing geometries. The inferred sizes of the caps turn out to be more compatible with a scenario in which the neutron star is heated by accretion, and place limits on the magnetic field strength. The hardness ratio modulation can then be explained in terms of energy-dependent beaming effects, and this constrains the acceptable models of the emerging radiation to cases in which softer photons are more strongly beamed than harder photons. An alternative explanation in terms of spatially variable absorption co-rotating in the magnetosphere is also discussed

    An alternative model of the magnetic cataclysmic variable V1432 Aquilae (=RX J1940.1-1025)

    Get PDF
    V1432 Aql is currently considered to be an asynchronous AM Her type system, with an orbital period of 12116.3 s and a spin period of 12150 s. I present an alternative model in which V1432 Aql is an intermediate polar with disk overflow or diskless accretion geometry, with a spin period near 4040 s. I argue that published data are insufficient to distinguish between the two models; instead, I provide a series of predictions of the two models that can be tested against future observations.Comment: 10 pages LaTeX including 3 Postscript Figures, to be published in Ap

    Feedback from massive stars at low metallicities : MUSE observations of N44 and N180 in the Large Magellanic Cloud

    Get PDF
    Accepted for publication in MNRAS, 27 pages, 21 figuresWe present MUSE integral field data of two HII region complexes in the Large Magellanic Cloud (LMC), N44 and N180. Both regions consist of a main superbubble and a number of smaller, more compact HII regions that formed on the edge of the superbubble. For a total of 11 HII regions, we systematically analyse the radiative and mechanical feedback from the massive O-type stars on the surrounding gas. We exploit the integral field property of the data and the coverage of the HeIIλ\lambda5412 line to identify and classify the feedback-driving massive stars, and from the estimated spectral types and luminosity classes we determine the stellar radiative output in terms of the ionising photon flux Q0Q_{0}. We characterise the HII regions in terms of their sizes, morphologies, ionisation structure, luminosity and kinematics, and derive oxygen abundances via emission line ratios. We analyse the role of different stellar feedback mechanisms for each region by measuring the direct radiation pressure, the pressure of the ionised gas, and the pressure of the shock-heated winds. We find that stellar winds and ionised gas are the main drivers of HII region expansion in our sample, while the direct radiation pressure is up to three orders of magnitude lower than the other terms. We relate the total pressure to the star formation rate per unit area, ΣSFR\Sigma_{SFR}, for each region and find that stellar feedback has a negative effect on star formation, and sets an upper limit to ΣSFR\Sigma_{SFR} as a function of increasing pressure.Peer reviewe

    Protocol for the United Kingdom Rotator Cuff Study (UKUFF) : a randomised controlled trial of open and arthroscopic rotator cuff repair

    Get PDF
    This project was funded by the NIHR Health Technology Assessment programme (project number 05/47/02). J. L. Rees has received a grant from Oxford University which is related to this paper. J. Dawson reports that Oxford University has received a grant from HTA which is related to this paper, as well as a study grant.Peer reviewedPublisher PD
    corecore