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Abstract. There is much interest in finding short presentations for the finite simple groups. Indeed

it has been suggested that all these groups are efficient in a technical sense. In previous papers we

produced nice efficient presentations for all except one of the simple groups with order less than one

million. Here we show that all simple groups with order between 1 million and 5 million are efficient by

giving efficient presentations for all of them. Apart from some linear groups these results are all new. We

also show that some covering groups and some larger simple groups are efficient. We make substantial

use of systems for computational group theory and, in particular, of computer implementations of coset

enumeration to find and verify our presentations.

1. Background

For presentations of groups there are various notions of short. These include length (addressed in

[12] and [13]) and a technical notion: efficiency. Epstein studied geometric properties of groups in

[10]. He used homological arguments to show that there is a lower bound on the minimal number

of relations required to present a group. He called a group efficient if this lower bound could be

achieved. A relevant, more formal, description of this notion appears in [3].

There is much interest in finding short presentations for (the nonabelian) finite simple groups and

for their covering groups. We focus on the issue of efficiency. (Throughout this paper, simple group

will refer to nonabelian simple group, since efficiency questions for cyclic groups have easy positive
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answers.) Recent work on short presentations for simple groups includes [2], [3], [4], [12], [13], [18]

and [20]. Indeed, John Wilson says

It seems reasonable to conjecture that the covering group of every finite simple group

has a presentation with two generators and two relators.

If true, this implies that all finite simple groups are efficient.

We use Atlas notation [9] for the names of simple groups and we denote the covering group of the

simple group G by Ĝ. In [3] and [4] we give nice efficient presentations for all except one, S4(4), of the

simple groups with order less than one million. The efficiency question for one other covering group,

Û3(5), remains unresolved.

For simple groups with order between 1 million and 5 million the situation is rather different to

that of smaller orders. For smaller orders most simple groups and their covering groups were already

known to be efficient when we produced our nice efficient presentations. There we resolved six out of

eight previously unknown cases among both the simple groups and their covers. For orders from 1

million to 5 million, apart from L2(p) (p prime) and L2(132), it was unknown whether the other seven

simple groups are efficient. We prove that they are by giving efficient presentations for each of them.

We also show that some larger groups are efficient. In some cases we prove that the covering groups

are efficient, but we leave unresolved the efficiency question for covering groups of four simple groups

with orders between 1 and 5 million.

This work was motivated in part by a request from Bill Kantor for an efficient presentation for A10.

In [13] it is shown that:

Theorem 1.1. [13, Theorem A.] All nonabelian finite simple groups of Lie type, with the possible

exception of the Ree groups 2G2(q), have presentations with 2 generators and at most 80 relations.

All symmetric and alternating groups have presentations with 2 generators and 8 relations.

They state that a similar result holds for all finite simple groups, except perhaps the Ree groups,

and also holds for many of the almost simple groups. They note that the bound 80 of Theorem A is

not optimal and that much better bounds are obtained in various cases. Indeed this paper and our

previous papers reveal some of these bounds via efficient presentations.

Aspects of their work [13, Examples 3.19] rely on using explicit efficient presentations for various

“small” groups as building blocks. For example [13, Table 1], efficient presentations for A10 are used

to construct 2-generator, 6-relator presentations for A47. More generally, efficient presentations ([3]

and [4]) for the universal central extension of Am (m ≤ 9) and for A10 (this paper) are used to reduce

the number of relations in various presentations.

2. Methodology

We use three different methods to find efficient presentations. Method 1 involves a study of short

presentations for perfect groups. In an extension of [16] we consider various 2-generator 3-relator

presentations with longest relator of length up to 35. Method 2 considers presentations based on
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different generating pairs for the groups. In principle the method looks at all essentially different

generating sets. The sizes of the groups considered here means that rather than trying to look at

all generating sets we randomly choose generating sets. Method 3 involves a study of one-relator

quotients of free products Cm ∗ Cn for coprime m and n. (By a one-relator quotient of a particular

group we mean a presentation obtained by adding one extra relator to a presentation for the specified

group.) The first two methods are described in detail in [3] while the third is described in [4]. There

is some overlap between these methods: presentations constructed using Method 1 also arise from

Method 3.

Each of our methods relies on investigations of search spaces of varying kinds. With increasing

group size and presentation length the search spaces grow enormously. Under these circumstances we

do not attempt exhaustive searches, but rather are satisfied when we have found at least one efficient

presentation for each simple group. In part our new results are due to us being able to make deeper

searches than previously undertaken.

We use GAP [11], Magma [1] and standalone programs to do our searches. We try to avoid listing

presentations which are readily seen to be equivalent, using tools for culling equivalent presentations.

Thus, we have a number of standalone programs which manipulate presentations in various ways

to attempt to find better presentations. One of these, ACME, applies Andrews-Curtis moves and is

described in [17]. The others investigate presentations obtained via simple canonical automorphisms

(see [16]) and Whitehead automorphisms, combined with Andrews-Curtis moves.

We check that our presentations are correct by coset enumeration. We generally use the ACE

enumerator [15], either as available in GAP or Magma, or as a standalone program for some more

difficult cases.

As far as reliability of results is concerned we assert that all presentations given in this paper

correctly define the groups. Each new presentation which appears has been verified by both GAP and

Magma programs to present the specified group. Here we intentionally do not use ACE for the GAP

check but rather use GAP’s internal coset enumerator (which was entirely independently written),

providing a strong level of confidence in the results.

We assess our presentations from a performance point of view by providing coset enumeration

statistics. We generally measure coset enumeration performance by giving the total and maximum

number of cosets used in a successful enumeration of the trivial subgroup using the Hard strategy of

ACE, with the group generators given in alphabetical order. (We note that these enumerations are for

performance measurement only and are by no means the best way to verify presentation correctness.)

We use two results from [3] and an extension each of which enable us to amalgamate relations in

presentations to give presentations for associated groups with fewer relations. The proofs of these

results are constructive, which allows us to build efficient presentations using them.

Theorem 2.1. Let G be a finite simple group. Suppose that G, or some stem extension of G, can be

presented as

{ a, b | ap = bq = w(a, b) = 1 }.
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Then the covering group of G, all stem extensions of G, and G itself, are efficient.

Corollary 2.2. Let G be a finite simple group. Suppose that G, or some stem extension of G, can be

presented as

{ a, b | u(a, b)p = v(a, b)q = w(a, b) = 1 }.

Suppose also that u(a, b) and v(a, b) generate the free group on a and b. Then the covering group of

G, all stem extensions of G, and G itself, are efficient.

A natural extension of Theorem 2.1 gives methods for amalgamating relations given a presentation

for (a stem extension of) a simple group with more relations, such as

P = {a, b | ap = bq = w1(a, b) = . . . = wn(a, b) = 1}.

We point out that our primary focus is on presentations which are efficient in terms of deficiency.

This does not always coincide with best presentations for other purposes. For deficiency-zero groups,

the deficiency-one presentation

{a, b | ap = bq = w(a, b) = 1}

is likely to be much more useful for practical computation than the efficient presentation produced by

Theorem 2.1,

{a, b | apb−q = w̃(a, b) = 1},

where the derivation of w̃(a, b) from w(a, b) is described in [3]. For example, these deficiency-one

presentations are better for coset enumeration than the corresponding efficient presentations. A similar

situation applies to presentations obtained from the extension of Theorem 2.1.

3. Orders 1 million to 5 million

In 1972 Sunday [19] gave efficient presentations for all L2(p) for prime p ≥ 5. We give efficient

presentations for all other simple groups with order between 106 and 5 × 106. (Only one of these,

L2(132), was previously known to be efficient.) We remark that our methods give shorter presentations

for individual groups than Sunday’s generic presentation.

We adopt the convention of using upper-case letters to denote inverses in presentations so that, for

example, A = a−1. We give presentations by listing sets of relators (often only implicitly specifying the

generators). For coset enumeration purposes the generators are always given in alphabetical order.

3.1. S6(2). Using Method 2 we investigated 3395 random generating pairs for S6(2), taking about 50

cpu days. We obtained initial presentations with between 5 and 19 relators. We reduced 3 of these

presentations to 3-relator presentations for preimages of S6(2) and 76 to 4-relator presentations. Most

of these were proper preimages. However one of the 3-relator presentations does present the group,

namely:

P1 : b10, BaBABAb2AB2, aBababa2babAB2.
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In addition we are able to use the extension of Theorem 2.1 to provide other efficient presentations

for S6(2) from among the 4-relator presentations. We give two examples. By amalgamating (AB)2

and B7 we obtain:

P2 : abab8, B2aB2aBA2BaB2aB2a,AbaB2aBAb2a2BAb2A2bAB2a2B2a2b2

and by amalgamating b4 and a7 we obtain:

P3 : b4a7, A2Ba3BA3Ba2b2Ab2A,AB2A2B2A3bA2b2a2bA.

Presentation P1 is much better for coset enumeration, requiring a maximum 1451520 cosets (that

is the order of the group) and total 2353519 cosets. Presentations P2 and P3 use maximums 19251628

and 54263230, and totals 23949284 and 54356579, respectively.

Usually with presentations like these on a, b from Method 2 we leave them as produced by Magma

to show how they appear. Our utilities for producing canonical presentations (see [16]) can often

shorten them somewhat, but in no case led to significant alterations.

3.2. A10. Using Method 2 we investigated 7035 random generating pairs for A10, taking about 100

cpu days. We obtained initial presentations with between 5 and 35 relators. We reduced 6 of these

presentations to 3-relator presentations for preimages of A10, five of which presented the group itself

rather than the cover.

We tabulate those five presentations (in the order we found them) together with the maximum and

total cosets used for enumerations over the trivial subgroup (index 1814400).

Table 1. Efficient presentations for A10

Relators Maximum Total

BA2BA3bAbA3, a2Ba5B3a3, A2baBaba3baBabA2B 62863144 64956275

babaBA3babab2a,A4Ba4bababab,Aba2b2aBA2B2a2BaBab 42591987 42606596

AB2AB2Ab2ab2, b2A2BA4ba2b5, A2B2A2BA2B4ab3 12931389 13229582

bA4b2Ab,BABAbABA2Ba2bAba2, babA2bABa2BA2bA2Ba 45828561 50469910

aBa2BA2b3ABa, aba2ba3baBABa, ba2bABa3BA2ba3 34912095 35256724

3.3. L3(7). Using Method 2 we investigated 442 random generating pairs for L3(7), taking about 2

cpu days. We obtained initial presentations with between 5 and 49 relators. We reduced one of these

presentations (which started with 8 relators) to a 3-relator presentation for the group itself, which has

order 1876896. The relators are:

ababA2Babab,A5ba2ba2ba2b, aB3abA3BA2b3ab

and the enumeration over the trivial subgroup used maximum 35818192 and total 36370301 cosets.
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3.4. L2(27). The groups L2(p) for prime p > 5 are all presentable as one-relator quotients of the

modular group, [5]. No such general result is known for any infinite family of groups L2(q) for proper

prime powers q. However we observe that various individual L2(q) are so presentable, as may be seen

in [6], [7] and [3].

Indeed L2(27) is a case in point. Using Method 1 we found two such defining sets of relators for

this group:

(wZw)2, (Wz)3, w2z2w2zwzwzwz3wzwzwzw2z2 and

(wZw)2, (Wz)3, wz2wz2w4zw2z4w2zw4z2wz2.

This time adding the Mendelsohn strategy to ACE we found that to define the 2097024 cosets of the

trivial subgroup requires maximums of 283082760 and 78097739 and totals of 285928760 and 80953562,

respectively.

Replacing w by aB and z by ab we can obtain efficient presentations where the first two relators

are a2 and b3, and the third relator is now twice as long. In many computations, shorter presentations

generally perform better than longer ones, which is why we prefer the {w, z} generating set for certain

investigations. These and all other presentations on {w, z} in this paper are symmetric in the sense

described in [6]. We call this kind of presentation palindromic (defined in Subsection 4.1). They were

found using Method 1 (and some of them were also found using Method 3).

The multiplier of L2(27) is trivial, so we need to reduce the number of relators to two. Using

Corollary 2.2 we can construct efficient presentations for L2(27) by replacing the first two relators in

these presentations for L2(27) with wzWzwZ (without changing the other relator). Practical coset

enumeration with these technically efficient presentations is about twice as hard compared with the

three relator ones. We define the cosets of the trivial subgroup using maximums of 674416677 and

141785001 and totals of 767116814 and 158932585, respectively.

3.5. L2(132). We readily found very many different presentations for L2(132) as a one-relator quotient

of the modular group. We tabulate third relators (in order of nondecreasing length) which comple-

ment (wZw)2 and (Wz)3 to present the group, together with maximum and total cosets required for

enumerations over the trivial subgroup, index 2413320. (The efficient presentation previously reported

in [6] is the last one in our table.)

As is the case for all 3-relator groups in this paper on generators {w, z} (and as already seen

in the previous subsection) we can construct efficient presentations for their covering groups using

Corollary 2.2. The enormous diversity of such presentations is discussed in [4, Subsection 4.2].

3.6. U4(3). This is the third smallest of the simple groups with multiplier of rank 2. This means that

efficient presentations on two generators have four relators. It also means that searches for efficient

presentations are somewhat different from those for groups with lower multiplier rank. This is already

witnessed in [3] with the groups L3(4) and Sz(8), the smaller simple groups with multiplier of rank 2.

Using Method 2 we investigated 6549 random generating pairs for U4(3), taking about 136 cpu days.

We obtained initial presentations with between 5 and 56 relators. We reduced 19 of these presentations
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Table 2. Third relator for L2(132)

Relator Maximum Total

w5z3w2z8w2z3 8872300 9029601

w5zwz2w10z2wz 2413320 3397688

wzwzwz2wzw2z2w2z2w2zwz2wzwz 253717890 254196866

wz4w3z2w2z4w2z2w3z4 49335198 50267677

wzw2zw6z6w6zw2z 44896560 46570975

w2zw3z8w3z8w3z 7709166 8770251

wz2wzw5zwz2w2z2wzw5zwz2 8136328 8449808

wzw6zwz12wzw6z 108420272 112330062

wz2w2zw6zw2z2w2zw6zw2z2 18110523 18260725

wzwzwzwz2w2zwzwz2wzwzw2z2wzwzwz 95208904 96639511

wz2w8z12w8z2 31366083 32010424

w2zwzw5zw3zw5zw3zw5zwz 23528008 23731554

w2zwzw3zwz2wzwzw3zwzwz2wzw3zwz 168593304 168977340

w5z5w6z8w6z5 3258522 4567814

to 4-relator presentations for preimages of U4(3), four of which presented the group itself rather than

a stem extension.

We tabulate those four presentations (in the order we found them) together with the maximum and

total cosets used for enumerations over the trivial subgroup (index 3265920).

Table 3. Efficient presentations for U4(3)

Relators Maximum Total

(Ba)5, BA2B3a2B3A2B,ABaB2ABAbAbaB3, babABaBa2B2AbA2b 147232399 152933805

AB2a3B2A2, (BAB)5, aB2AB2ABAB2aB2aB, b2ABaBaBA2Bababa2BA 11347637 13723387

Ab2aBAb2ab2, baB3A3baBab2a,ABaB3A2bab3Ab, (A2b)5 4806024 6387193

B7, ab2a2BA2B3A2B2, BA2b2a2Ba2b2a2B2a2, Ab2Ab2aB2Ab2AbaB3A 41262105 42726475

Of these the third is best for coset enumeration. However we can do somewhat better using the

extension of Theorem 2.1. Indeed, we can build efficient presentations in the following way.

Among 4-relator presentations for preimages of U4(3) we found:

a5, b7, Ab3ABAB3Ab, baBaBABAbab3A

which are relators for an efficient presentation of the double cover. We can amalgamate the first two

relators and adjust the last relator to get:

a5b7, Ab3ABAB3Ab, baBaBABAbaB4A
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which is an efficient presentation for the twelvefold cover. Alternatively by modifying the other relator

we obtain relators (listed in order by length) for an efficient, but slightly longer, presentation of the

sixfold cover:

a5b7, baBaBABAbab3A, a4b3ABAB3Ab.

It is easier to start with the smaller group to find the centre. In the sixfold cover we determine that

a2Ba2BaBA2B2AbABA2B is central and has order 6, so by factoring it out we have relators

a5b7, baBaBABAbab3A, a4b3ABAB3Ab, a2Ba2BaBA2B2AbABA2B

for an efficient presentation of U4(3) which uses a maximum of 3265920 (that is, the group order) and

total 4902608 cosets to enumerate over the trivial subgroup.

In the twelvefold cover we find that a2baBab2a2bAbA2bA2b is central and has order 12, so by

factoring it out we have relators

a5b7, Ab3ABAB3Ab, baBaBABAbaB4A, a2baBab2a2bAbA2bA2b

for a shorter efficient presentation of U4(3). It has similar coset enumeration performance, using a

maximum of 3265920 and total 4771814 cosets.

3.7. G2(3). It is surprisingly easy to find an efficient presentation for G2(3). Using random generating

sets leads to presentations with many relations. So we focussed on (2, 3)-generating sets. The Magma

Relations command when applied to an involution and a representative of conjugacy class 3C (that

is, Atlas standard generators) regularly produced an almost efficient presentation with 4 relators:

a2, B3, (aB)13, bababaBabaBaBabaBaBaBaBabababaBababaBabaBaBaBaba.

Coset enumeration over the trivial subgroup (index 4245696) is easy, using a maximum 4245696 and

total 5090793 cosets.

Amalgamation of the first two relators to give a2b3 preserves the group, giving us an efficient

presentation. The coset enumeration is about 8 times harder, requiring a maximum of 33202245 and

total 35685039 cosets.

If instead we amalgamate the last two relators of the Magma presentation to give:

a2, b3, aBaBaBaBaBaBaBababaBaBabaBaBaBaBabababaBababaBabaBaBab

we get a deficiency one presentation for the cover Ĝ2(3) which has order 12737088. To enumerate the

cosets of the trivial subgroup with the Mendelsohn strategy uses a maximum of 478295191 and total

479505174 cosets.

Now we can amalgamate the first two relators giving a2b3 and adjust (in one of very many different

possible ways, as described in [3]) the exponents of the final relator to obtain:

aBaBaBaBaBaBaBababaBaBAbABABABABAbAbAbABAbAbABAbABABAb

which combine to give us an efficient presentation for the cover. We note that this presentation is not

satisfied by the standard generators of the online Atlas [21] (for which no presentation is given).
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Given the difficulty of the enumeration with the deficiency one presentation, we compare enumer-

ations over the subgroup 〈ab〉. For the deficiency one presentation the index 326592 enumeration

uses a maximum 15462319 and total 15539007 cosets while the enumeration with this given efficient

presentation uses a maximum 79431266 and total 104749720.

3.8. S4(5). We tabulate third relators (in order of nondecreasing length) which complement (wZw)2

and (Wz)3 to present S4(5), together with maximum and total cosets required for enumerations over

the trivial subgroup, index 4680000. Note that all the coset enumerations are quite easy.

Table 4. Third relator for S4(5)

Relator Maximum Total

w3z2w5z4w5z2 4680000 4704212

w2z3w3z2wzw2z3w2zwz2w3z3 4680000 4962393

w3zwzw2zwz2wzw4zwz2wzw2zwz 4680000 5342417

w3z3w3z4w4z4w4z4w3z3 4680000 4766748

We note that this group also turns up as a one-relator quotient of C2 ∗ C13:

{x2, y13, xyxy3xy2xy−3xy6}.

The enumeration for this presentation is also easy, using a maximum of 4680000 and total 6201255

cosets.

4. Other groups

In this section we provide efficient presentations mainly for groups with order greater than 5 million.

Of these, only one, L2(192), was previously known to be efficient.

4.1. 2-dimensional linear groups. Previous work has shown that it is relatively easy to show that

2-dimensional linear groups are efficient. We tabulate (Table 5) some larger such groups, not previously

known to be efficient, for which we have found efficient presentations as one-relator quotients of the

modular group. We tabulate third relators (in order of nondecreasing length) which complement

(wZw)2 and (Wz)3 to present the group, together with group order and maximum and total cosets

required for enumerations over the trivial subgroup.

We note than an efficient presentation was previously reported for L2(192) in [6]. That presentation

does not appear in our list since its relator length is outside the range we investigated here, whereas

it has short syllable length which explains why it was found.

A linear word is a palindrome if it reads the same forwards and backwards. However group relators

are best thought of as cyclic words. We say a presentation is palindromic if each of its relators when

written around a circle can be read the same forwards and backwards from at least one place on the

circle. The efficient presentations for L2(p) (for all odd primes p) given in [5] are palindromic, as are
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Table 5. Third relator for some linear groups

Relator Maximum Total

Third relator for L2(35), order 7174332

wz2w2zw14zw2z2 72600049 73819479

wzwz2wz3w3zw2zw3z3wz2wz 14758861 16910148

wz4wz2wz2wzw2zw2zw2zwz2wz2wz4 76727537 77204593

w5zwz2wzwz2wzw6zwz2wzwz2wz 147759715 153131529

wz2wz4w2z2w4zw2zw4z2w2z4wz2 20473674 26780217

Third relator for L2(172), order 12068640

wzw2zwzwz2w6z2wzwzw2z 21266263 24887892

wzwz4w5z4w5z4wz 30017724 31397328

w3zwz4w3z3w4z3w3z4wz 120074333 125448989

w4z3wz5wzw5zwz5wz3 280550187 292430044

Third relator for L2(73), order 20176632

wz2wzw2z2w2z2w2z2w2z2w2zwz2 20176632 27577156

wzwzwzwz4wzwzw2zwzwz4wzwzwz 61265317 66077373

w4z4w2z2w4z5w4z2w2z4 53383115 64531504

Third relator for L2(192), order 23522760

w2zwz2w5z3w5z2wz 307943913 309894043

w2z2w2z2wzwz5wzwz2w2z2 23522760 29390662

w2z3w2z2w11z2w2z3 251881533 253137098

w2z8w2z2w3z2w2z8 78665641 81390063

w3z3wzw4zwz4wzw4zwz3 34893548 57037888

w5z2wzw2z5w6z5w2zwz2 161703657 174365181

w4z2wzw2z2wzw2z5w2zwz2w2zwz2 166227051 187655294

wzw2zwzwz4wzwzw4zwzwz4wzwzw2z 37169063 53385139

w2z3w4z2w2z4w3z4w2z2w4z3 148086119 180629558

Third relator for L2(232), order 74017680

wzw2zwzw2z2w4z2w2zwzw2z 145105980 172170274

wz2wz6w8z6wz2 113525791 139448007

w2zwz3wzwzw3zwz3wzw3zwzwz3wz 184168005 222297555

w2zwz2w2z2w3z2w2z3w2z2w3z2w2z2wz 239540807 258330801

all presentations on {w, z} in this paper. We conjecture that all simple 2-dimensional linear groups

have palindromic presentations.

We note that various other groups, including some very large direct products, can be presented as

one relator quotients of the modular group with palindromic relators. A more general investigation of

one relator quotients of the modular group, without insistence on palindromic relators, is in [8].
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4.2. L4(3). Using Method 2 we investigated 4106 random generating pairs for L4(3), taking about 136

cpu days. We obtained initial presentations with between 5 and 95 relators. We reduced 2 of these

presentations to efficient presentations for L4(3):

BAB2ABaBaBAB,AbabAbA2b2aBab2, ABA3BaBa3BaBA3BAB

which uses a maximum of 684365079 and total 718575037 cosets to enumerate the 6065280 cosets of

the trivial subgroup, and:

BA5B3aB,B13, ABa6BAB2ab

which uses a maximum of 57948651 and total 60171938 cosets.

4.3. U3(8). Using Method 2 we investigated 3906 random generating pairs for U3(8), taking about

136 cpu days. We obtained initial presentations with between 5 and 98 relators. We reduced two of

these presentations to efficient presentations for U3(8):

(ababa2)2, BAbaBA3BabABA2, bAB2A2BA2B2Ab2a2b

which uses a maximum of 188313099 and total 191400773 cosets to enumerate the 5515776 cosets of

the trivial subgroup, and:

ABABa2B3A,BABABABab3aBA, bAb2AbAbABABAb5ab3abA

which uses a maximum of 20111706 and total 27583250 cosets.

4.4. A11. This group provides an interesting illustration of the effectiveness of the extension of The-

orem 2.1 to presentations with more relations.

We applied each of our methods to investigate presentations for A11. One variant of Method 2

restricts generating pairs to specific conjugacy classes. We looked at all essentially different generating

pairs with orders (2,3), (2,4), (2,5) and (3,4) and their associated presentations. The (2,5) case took

about 160 cpu hours to complete.

Of all of these, only in the (2,5) case did we find presentations with 6 initial relations, indeed three

of them. The relator sets (as found) were:

a2, B5, (baBa)4, (babaBaB2ab)2, (aB)11, (bababaBaBaBa)2;

a2, B5, (baB2aBaB2ab)2, (baBab2abaBaBab)2, (Baba)7, (aB)15; and

a2, B5, (aB)5, (baBa)6, (baBab2aBaB2aB2ab)2, (baBab2aB2aB2aBab)2.

Coset enumerations with them are relatively easy. In each case, enumerations over the trivial subgroup

complete using a maximum of 19958400 cosets (that is, the group order) and totals 29347326, 25498310

and 21492223, respectively.

Each of these sets consists entirely of power relations, giving many options for amalgamation, leading

to either the group itself or its cover. We started with the first relator set.

Replacing relators 3 and 4 by the amalgamation

baBabaBabaBabaBababaBaB2ab2abaBaB2ab
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preserves the group (and coset enumeration becomes about four times harder). Next, amalgamating

original relators 5 and 6 to give BaBaBaBaBaBaBaB2aBaBabababaBaBaB again preserves the

group (and the enumeration is not significantly harder).

Finally we amalgamate the first two relators to give a2b5 and we have a 3 relator presentation. Since

it is perfect, it must be for A11 or its cover. Coset enumeration over the trivial subgroup confirms

that it is the group itself. This coset enumeration is quite hard; with the Mendelsohn strategy it uses

a maximum of 1490482794 and total 1727476818 cosets.

In a subsequent computation we found another efficient presentation for A11 which is much better

for coset enumeration. This time using randomly selected generating sets we investigated 371 presen-

tations in about 94 cpu days. We were able to reduce an initial 7 relator set on generators with orders

8 and 6 to a 4 relator set:

bABA2Ba2bAB2a2, (abAbaBa)2, bA2bA4BabaBa2, (BA)9.

Again we amalgamate the power relators, this time giving

BABABABABABABABA2baBa2bAbaBa.

With these three relators we can enumerate the cosets of the trivial subgroup (again with the

Mendelsohn strategy) using a maximum of 47094777 and total 68743286 cosets.

4.5. U3(5) revisited. In [4] we pointed out that U3(5) (order 126000) was particulary difficult to

handle with our methods. Indeed, we failed to find an efficient presentation for its cover, Û3(5) (order

378000). This remains the case. However, by using the methods described here, we have found some

better presentations and we list their canonical (see [16]) representatives.

Table 6. Better efficient presentations for U3(5)

Relators Length Maximum Total

a5, a2bABabaBAb, ab2Ab2ab2AB2 28 1031903 1240589

a7, abAb2abAB3, a2baba2b2Ab2 30 223016 223400

The first of these presentations for U3(5) is shorter than our previous shortest. The second presen-

tation has the same length as our previous shortest, but enumerates better than both that and the

shorter one.

For the cover, Û3(5), our previous shortest presentation has length 35. We have found many shorter

ones and list canonical representatives of the five shortest that we have found.
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Table 7. Shorter presentations for Û3(5)

Relators Length Maximum Total

a7, abababaB4, a2BAbABa2BAB 30 4934202 5243558

a7, abAb3abAB2, a2bAba2B2aB2 30 384634 610272

a8, a2baBaba2b2, abAbabAbaB2 30 12243107 12950471

a8, ababAbabaB, a2B2abAbAbaB2 31 13595758 14002922

(ab)3, a3bAbAbAbAb, a2B3abAbaB3 31 380511 589284
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