37 research outputs found

    ASSESSMENT OF SOLID WASTE GENERATION AND ITS MANAGEMENT IN SELECTED SCHOOL CAMPUSES IN PUDUCHERRY REGION, INDIA

    Get PDF
    Among all the significant contributors of municipal solid waste, schools have been chosen for the study since the solid waste generation rate and its corresponding composition has not been reported or has been underestimated in the schools of Puducherry region. Hence, the present paper is an attempt to fill up this gap in our knowledge. The existing waste management system in selected schools was disorganized and inadequate to meet the specific waste management objectives as specified in Municipal Solid Waste (Management & Handling) Rules 2000, India. The study found that in the school, average per capita waste generation rate was 0.092 (±0.025) kg/capita/day varying from a high of 0.117 (±0.021) kg/capita/day in higher secondary schools to a low of 0.059 (±0.020) kg/capita/day in primary schools. The mean composition of school waste is made up of 39% food waste; 33% paper; 11% silt, soil and mud (combined); 8% plastic; 2% wood, glass, metal and textile (combine); 2% clinical and sanitary wastes; 1% E-waste; 4% other wastes. Approximately, 70 - 80% of generated solid waste is openly dumped or burnt in the campus, 10 - 15% is collected by municipal authorities and the remaining 6 - 8% is recovered through informal recycling and composting facilities. Based on the findings, recommendations to develop efficient waste prevention and management practices were suggested. Establishing “waste avoidance, handling and recovery” policies and programs for food, paper, plastic and soil wastes could significantly influence the success of sustainable solid waste management system at the school level

    BIOCOMPOSITES FROM SURFACE MODIFIED REGENERATED CELLULOSE FIBERS AND LACTIC ACID THERMOSET BIORESIN

    No full text
    Abstract: Thermoset bioresin was synthesized from lactic acid and glycerol, and the resin was characterized for it to be used in composite applications. On the other hand, regenerated cellulose fibers were surface treated to improve the physico–chemical interactions at the fiber–matrix interface. The effect of surface treatments, silane and alkali, on regenerated cellulose fibers was studied by using the treated fibers as reinforcement in lactic acid thermoset bioresin. Mechanical tests were used as indicator of the improvement of the interfacial strength. Fiber surface treatments and the effect on adhesion to the matrix were characterized using microscopy images and thermal conductivity. Mechanical properties of the composites showed an increase when treated with silane as the bi-functional silane molecule acts as link between the regenerated cellulose fiber and the bioresin. Porosity volume decreased significantly on silane treatment due to improved interface and interlocking between fiber and matrix. Decrease in water absorption and increase in contact angle confirmed the change in the hydrophilicity of the composites. The storage modulus increased when the reinforcements were treated with silane whereas the damping intensity decreased for the same composites indicating a better adhesion between fiber and matrix on silane treatment. Thermogravimetric analysis indicated that the thermal stability of the reinforcement altered after treatments. The resin curing was followed using differential scanning calorimetry and the necessity for post-curing was recommended. Finite element analysis was used to predict the thermal behavior of the composites and a non-destructive resonance analysis was performed to ratify the modulus obtained from tensile testing. The changes were also seen on composites reinforced with alkali treated fiber. Microscopy images confirmed the good adhesion between the silane treated fibers and the resin at the interface

    BIOCOMPOSITES FROM SURFACE MODIFIED REGENERATED CELLULOSE FIBERS AND LACTIC ACID THERMOSET BIORESIN

    No full text
    Abstract: Thermoset bioresin was synthesized from lactic acid and glycerol, and the resin was characterized for it to be used in composite applications. On the other hand, regenerated cellulose fibers were surface treated to improve the physico–chemical interactions at the fiber–matrix interface. The effect of surface treatments, silane and alkali, on regenerated cellulose fibers was studied by using the treated fibers as reinforcement in lactic acid thermoset bioresin. Mechanical tests were used as indicator of the improvement of the interfacial strength. Fiber surface treatments and the effect on adhesion to the matrix were characterized using microscopy images and thermal conductivity. Mechanical properties of the composites showed an increase when treated with silane as the bi-functional silane molecule acts as link between the regenerated cellulose fiber and the bioresin. Porosity volume decreased significantly on silane treatment due to improved interface and interlocking between fiber and matrix. Decrease in water absorption and increase in contact angle confirmed the change in the hydrophilicity of the composites. The storage modulus increased when the reinforcements were treated with silane whereas the damping intensity decreased for the same composites indicating a better adhesion between fiber and matrix on silane treatment. Thermogravimetric analysis indicated that the thermal stability of the reinforcement altered after treatments. The resin curing was followed using differential scanning calorimetry and the necessity for post-curing was recommended. Finite element analysis was used to predict the thermal behavior of the composites and a non-destructive resonance analysis was performed to ratify the modulus obtained from tensile testing. The changes were also seen on composites reinforced with alkali treated fiber. Microscopy images confirmed the good adhesion between the silane treated fibers and the resin at the interface

    Development of regenerated cellulose reinforcements and their use in structural composites for automotive applications

    No full text
    There is need for the bio‐based materials which could fully or partly replace the synthetic materials in automotive components. Several studies have been suggested to incorporate natural fiber based materials into automotives, and regenerated cellulose fibers could have a great potential several automotive applications. In the paper we will describe ongoing research where we study non‐woven viscose and Lyocell as well as uniaxial continuous viscose filament reinforcements for the use in structural composites. Hybrid reinforcements based on regenerated cellulose fibers and glass fibers have also been studied, with the intention to optimize the reinforcement durability. The uniaxial viscose filament reinforcements were prepared by a winding technique, and we have also combined the viscose filament with continuous hemp yarns as well as different thermoplastic yarns. Both thermoset and thermoplastic composites were then produced by compression moulding with a pressure of 40 bar and at the temperature between 160‐170°C for 5 minutes. The resulting composites have been characterized regarding mechanical and thermal properties

    Processing Of Non-Woven Lyocell Fabric And Mechanical Properties Of Non-Woven Fiber Reinforced Bio-Based Composites

    No full text
    Non‐woven Lyocell mats were made from the fibers by carding and needling process at Swerea IVF, Mölndal, Sweden. The carding was done first in order to align the clumps of fibers. And then needle punching was done to obtain compact and entangled fiber mat. The composites were made by compression molding technique at temperature between 160‐170°C and pressure of 40 bar with non‐woven Lyocell, jute and viscose fiber reinforcements. The hybrid bio‐based composites were produced in this study to improve the mechanical properties of the composites. Bio‐based thermoset resin known as acrylated epoxidized soybean oil (AESO) was used as matrix in the composites. Laser cutting technique was adopted to cut specimens from laminates according to standard. The dimensional stability of the composites was determined by soaking the composite specimens in water for 10 days. Tensile and flexural properties of the composites were determined before and after water uptake. Hybridizing the jute fiber with glass and Lyocell fibers reduced the water uptake. Mechanical properties of the non‐woven fiber reinforced composites were studied by tensile, flexural, impact tests. Viscoelastic properties were studied using dynamic mechanical thermal analysis (DMTA). Tensile, flexural and impact properties of natural fiber composites were improved by hybridizing with Lyocell fiber

    Waste Management Option for Bioplastics Alongside Conventional Plastics

    No full text
    Bioplastics can be defined as polymers derived partly or completely from biomass. Bioplastics can be biodegradable such as polylactic acid (PLA) and polyhydroxyalkonoates (PHA); or non-biodegradable (biobased polyethylene (bio-PE), polypropylene (bio-PP), polyethylene terephthalate (bio-PET)). The usage of such bioplastics is expected to increase in the future due to new found interest in sustainable materials. At the same time, these plastics become a new type of waste in the recycling stream. Most countries do not have separate bioplastics collection for it to be recycled or composted. After a brief introduction of bioplastics such as PLA in UK, these plastics are once again replaced by conventional plastics by many establishments due to lack of commercial composting. Recycling companies fear the contamination of conventional plastic in the recycling stream and they said they would have to invest in expensive new equipment to separate bioplastics and recycle it separately. Bioplastics are seen as a threat to the recycling industry as bioplastics may degrade during the mechanical recycling process and the properties of the recycled plastics are seriously impacted. This project studies what happens when bioplastics contaminate conventional plastics. Three commonly used conventional plastics were selected for this study: polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET). In order to simulate contamination, two biopolymers, either polyhydroxyalkanoate (PHA) or thermoplastic starch (TPS) were blended with the conventional polymers. The amount of bioplastics in conventional plastics was either 1% or 5%. The blended plastics were processed again to see the effect of degradation. Mechanical, thermal and morphological properties of these plastics were characterized.   The results from contamination showed that the tensile strength and the modulus of PE was almost unaffected whereas the elongation is clearly reduced indicating the increase in brittleness of the plastic. Generally, it can be said that PP is slightly more sensitive to the contamination than PE. This can be explained by the fact that the melting point of PP is higher than for PE and as a consequence, the biopolymer will degrade more quickly. However, the reduction of the tensile properties for PP is relatively modest. It is also important to notice that when plastics are recovered, there will always be a contamination that will reduce the material properties. The reduction of the tensile properties is not necessary larger than if a non-biodegradable polymer would have contaminated PE or PP. The Charpy impact strength is generally a more sensitive test method towards contamination. Again, PE is relatively unaffected by the contamination but for PP there is a relatively large reduction of the impact properties already at 1% contamination. PET is polyester and it is by its very nature more sensitive to degradation than PE and PP. PET also have a much higher melting point than PE and PP and as a consequence the biopolymer will quickly degrade at the processing temperature of PET. As for the tensile strength, PET can tolerate 1% contamination without any reduction of the tensile strength. However, when the impact strength is examined, it is clear that already at 1% contamination, there is a strong reduction of the properties. It can also be seen that presence of TPS is more detrimental to PET than PHA is. This can be explained by the fact that TPS contain reactive hydroxyl groups that can react with the ester bond of PET. This will in other words lead to degradation of PET. The thermal properties show the change in the crystallinity. As a general conclusion, it can be said that the plastics become less crystalline when contaminated. The blends were also characterized by SEM. Biphasic morphology can be seen as the two polymers are not truly blendable which also contributes to reduced mechanical properties. Recycling of the contaminated polymer shows an increase in crystallinity. This means that when the polymers are processed, polymer degradation occur causing the polymer chains to gradually become shorter which will enhance the crystallization process. The study shows that PE is relatively robust againt contamination, while polypropylene (PP) is somewhat more sensitive and polyethylene terephthalate (PET) can be quite sensitive towards contamination

    Performance of biocomposites from surface modified regenerated cellulose fibers and lactic acid thermoset bioresin

    No full text
    The effect of surface treatments, silane and alkali, on regenerated cellulose fibers was studied by using the treated fibers as reinforcement in lactic acid thermoset bioresin. The surface treatments were performed to improve the physico–chemical interactions at the fiber–matrix interface. Tensile, flexural and impact tests were used as indicator of the improvement of the interfacial strength. Furthermore, thermal conductivity, viscoelasticity measurements as well as microscopy images were made to characterize the fiber surface treatments and the effect on adhesion to the matrix. The results showed that silane treatment improved the mechanical properties of the composites as the silane molecule acts as link between the cellulose fiber and the resin (the fiber bonds with siloxane bridge while the resin bonds with organofunctional group of the bi-functional silane molecule) which gives molecular continuity in the interphase of the composite. Porosity volume decreased significantly on silane treatment due to improved interface and interlocking between fiber and matrix. Decrease in water absorption and increase in contact angle confirmed the change in the hydrophilicity of the composites. The storage modulus increased when the reinforcements were treated with silane whereas the damping intensity decreased for the same composites indicating a better adhesion between fiber and matrix on silane treatment. Thermogravimetric analysis indicated that the thermal stability of the reinforcement altered after treatments. The resin curing was followed using differential scanning calorimetry and the necessity for post-curing was recommended. Finite element analysis was used to predict the thermal behavior of the composites and a non-destructive resonance analysis was performed to ratify the modulus obtained from tensile testing. The changes were also seen on composites reinforced with alkali treated fiber. Microscopy images confirmed the good adhesion between the silane treated fibers and the resin at the interface
    corecore