5,309 research outputs found

    Semiclassical (Quantum Field Theory) and Quantum (String) de Sitter Regimes: New Results

    Full text link
    We compute the quantum string entropy S_s(m, H) from the microscopic string density of states rho_s (m,H) of mass m in de Sitter space-time. We find for high m, a {\bf new} phase transition at the critical string temperature T_s= (1/2 pi k_B)L c^2/alpha', higher than the flat space (Hagedorn) temperature t_s. (L = c/H, the Hubble constant H acts at the transition as producing a smaller string constant alpha' and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT Hawking-Gibbons) de Sitter temperature T_sem = hbar c /(2\pi k_B L). We find a new formula for the full de Sitter entropy S_sem (H), as a function of the usual Bekenstein-Hawking entropy S_sem^(0)(H). For L << l_{Planck}, ie. for low H << c/l_Planck, S_{sem}^{(0)}(H) is the leading term, but for high H near c/l_Planck, a new phase transition operates and the whole entropy S_sem (H) is drastically different from the Bekenstein-Hawking entropy S_sem^(0)(H). We compute the string quantum emission cross section by a black hole in de Sitter (or asymptotically de Sitter) space-time (bhdS). For T_sem ~ bhdS << T_s, (early evaporation stage), it shows the QFT Hawking emission with temperature T_sem ~ bhdS, (semiclassical regime). For T_sem ~ bhdS near T_{s}, it exhibits a phase transition into a string de Sitter state of size L_s = l_s^2/L}, l_s= \sqrt{\hbar alpha'/c), and string de Sitter temperature T_s. Instead of featuring a single pole singularity in the temperature (Carlitz transition), it features a square root branch point (de Vega-Sanchez transition). New bounds on the black hole radius r_g emerge in the bhdS string regime: it can become r_g = L_s/2, or it can reach a more quantum value, r_g = 0.365 l_s.Comment: New original materia

    Warm inflationary model in loop quantum cosmology

    Full text link
    A warm inflationary universe model in loop quantum cosmology is studied. In general we discuss the condition of inflation in this framework. By using a chaotic potential, V(ϕ)ϕ2V(\phi)\propto \phi^2, we develop a model where the dissipation coefficient Γ=Γ0=\Gamma=\Gamma_0= constant. We use recent astronomical observations for constraining the parameters appearing in our model.Comment: 15 pages, 1 figure, Accepted for publication in Phys. Rev.

    Semiclassical (QFT) and Quantum (String) anti - de Sitter Regimes: New Results

    Get PDF
    We compute the quantum string entropy S_s(m, H) from the microscopic string density of states of mass m in Anti de Sitter space-time. For high m, (high Hm -->c/\alpha'), no phase transition occurs at the Anti de Sitter string temperature T_{s} which is higher than the flat space (Hagedorn) temperature t_{s}. (the Hubble constant H acts as producing a smaller string constant and thus, a higher tension). T_s is the precise quantum dual of the semiclassical (QFT) Anti de Sitter temperature scale . We compute the quantum string emission by a black hole in Anti de Sitter space-time (bhAdS). In the early evaporation stage, it shows the QFT Hawking emission with temperature T_{sem~bhAdS}, (semiclassical regime). For T_{sem~bhAdS}--> T_{s}, it exhibits a phase transition into a Anti de Sitter string state. New string bounds on the black hole emerge in the bhAdS string regime. We find a new formula for the full (quantum regime included) Anti de Sitter entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy S_{sem}^(0). For low H (semiclassical regime), S_{sem}^(0) is the leading term but for high H (quantum regime), no phase transition operates, in contrast to de Sitter space, and the entropy S_{sem} is very different from the Bekenstein-Hawking term S_{sem}^(0).Comment: Comments 26 pages; no figure

    Semiclassical (QFT) and Quantum (String) Rotating Black Holes and their Evaporation: New Results

    Full text link
    Combination of both quantum field theory (QFT) and string theory in curved backgrounds in a consistent framework, the string analogue model, allows us to provide a full picture of the Kerr-Newman black hole and its evaporation going beyond the current picture. We compute the quantum emission cross section of strings by a Kerr-Newmann black hole (KNbh). It shows the black hole emission at the Hawking temperature T_{sem} in the early evaporation and the new string emission featuring a Hagedorn transition into a string state of temperature T_ s at the last stages. New bounds on the angular momentum J and charge Q emerge in the quantum string regime. The last state of evaporation of a semiclassical KNbh is a string state of temperature T_s, mass M_s, J = 0 = Q, decaying as a quantum string into all kinds of particles.(There is naturally, no loss of information, (no paradox at all)). We compute the microscopic string entropy S_s(m, j) of mass m and spin mode j. (Besides the usual transition at T_s), we find for high j, (extremal string states) a new phase transition at a temperature T_{sj} higher than T_s. We find a new formula for the Kerr black hole entropy S_{sem}, as a function of the usual Bekenstein-Hawking entropy . For high angular momentum, (extremal J = GM^2/c), a gravitational phase transition operates and the whole entropy S_{sem} is drastically different from the Bekenstein-Hawking entropy. This new extremal black hole transition occurs at a temperature T_{sem J} higher than the Hawking temperature T_{sem}.Comment: New articl

    Comprehensive transient-state study for CARMENES-NIR high thermal stability

    Full text link
    CARMENES has been proposed as a next-generation instrument for the 3.5m Calar Alto Telescope. Its objective is finding habitable exoplanets around M dwarfs through radial velocity measurements (m/s level) in the near-infrared. Consequently, the NIR spectrograph is highly constraint regarding thermal/mechanical requirements. As a first approach, the thermal stability has been limited to \pm 0.01K (within year period) over a working temperature of 243K. This can be achieved by means of several temperature-controlled rooms. The options considered to minimise the complexity of the thermal design are here presented, as well as the transient-state thermal analyses realised to make the best choice

    Present and future of the OTELO project

    Full text link
    OTELO is an emission-line object survey carried out with the red tunable filter of the instrument OSIRIS at the GTC, whose aim is to become the deepest emission-line object survey to date. With 100% of the data of the first pointing finally obtained in June 2014, we present here some aspects of the processing of the data and the very first results of the OTELO survey. We also explain the next steps to be followed in the near future.Comment: Oral contribution presented in the XI Scientific Meeting of the Spanish Astronomical Society held on September 8-12, in Teruel, Spain (7 pages, 2 figures, 1 table). To appear in Highlights of Spanish Astrophysics VIII, Proceedings of the XI Scientific Meeting of the Spanish Astronomical Society. Eds. A. J. Cenarro, F. Figueras, C. Hern\'andez-Monteagudo, J. Trujillo, L. Valdiviels

    Conical refraction healing after partially blocking the input beam

    Get PDF
    In conical refraction, when a focused Gaussian beam passes along one of the optic axes of a biaxial crystal it is transformed into a pair of concentric bright rings at the focal plane. We demonstrate both theoretically and experimentally that this transformation is hardly affected by partially blocking the Gaussian input beam with an obstacle. We analyze the influence of the size of the obstruction both on the transverse intensity pattern of the beam and on its state of polarization, which is shown to be very robust

    On the probability of reaching a barrier in an Erlang(2) risk process

    Get PDF
    HolaIn this paper the process of aggregated claims in a non-life insurance portfolio as defined in the classical model of risk theory is modified. The Compound Poisson process is replaced with a more general renewal risk process with interoccurrence times of Erlangian type. We focus our analysis on the probability that the process of surplus reaches a certain level before ruin occurs, χ(u,b). Our main contribution is the generalization obtained in the computation of χ(u,b) for the case of interoccurrence time between claims distributed as Erlang(2, β) and the individual claim amount as Erlang (n, γ).Peer Reviewe

    Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation

    No full text
    Microdroplets have been used as reactors for the fabrication of agarose beads with high uniformity in shape and size, and densely loaded with silver ions, which were subsequently reduced into nanoparticles using hydrazine. The resulting nanocomposite beads not only display a high plasmonic activity, but can also trap/concentrate analytes, which can be identified by means of surface-enhanced Raman scattering (SERS) spectroscopy. The size of the beads is such that it allows the detection of a single bead under a conventional optical microscope, which is very useful to reduce the amount of material required for SERS detectio
    corecore