8 research outputs found
Decidual and placental NOD1 is associated with inflammation in normal and preeclamptic pregnancies
Introduction: Inflammation is a normal physiological process that increases to harmful levels in preeclampsia. It affects the interaction between maternal immune cells and fetal trophoblasts at both sites of the maternal-fetal interface; decidua and placenta. The pattern recognition receptor nucleotide-binding oligomerization domain-containing protein (NOD)1 is expressed at both sites. This study aimed to characterize the cellular expression and functionality of NOD1 at the maternal-fetal interface of normal and preeclamptic pregnancies. Methods: Women with normal or preeclamptic pregnancies delivered by caesarean section were included. Decidual (n = 90) and placental (n = 91) samples were analyzed for NOD1 expression by immunohistochemistry and an automated image-based quantification method. Decidual and placental explants were incubated with or without the NOD1-agonist iE-DAP and cytokine responses measured by ELISA. Results: NOD1 was markedly expressed by maternal cells in the decidua and by fetal trophoblasts in both decidua and placenta, with trophoblasts showing the highest NOD1 expression. Preeclampsia with normal fetal growth was associated with a trophoblast-dependent increase in decidual NOD1 expression density. Compared to normal pregnancies, preeclampsia demonstrated stronger correlation between decidual and placental NOD1 expression levels. Increased production of interleukin (IL)-6 or IL-8 after in vitro explant stimulation confirmed NOD1 functionality. Discussion: These findings suggest that NOD1 contributes to inflammation at the maternal-fetal interface in normal pregnancies and preeclampsia and indicate a role in direct maternal-fetal communication. The strong expression of NOD1 by all trophoblast types highlights the importance of combined assessment of decidua and placenta for overall understanding of pathophysiological processes at the maternal-fetal interface.publishedVersio
Divergent Regulation of Decidual Oxidative-Stress Response by NRF2 and KEAP1 in Preeclampsia with and without Fetal Growth Restriction
Utero-placental development in pregnancy depends on direct maternal–fetal interaction in the uterine wall decidua. Abnormal uterine vascular remodeling preceding placental oxidative stress and placental dysfunction are associated with preeclampsia and fetal growth restriction (FGR). Oxidative stress is counteracted by antioxidants and oxidative repair mechanisms regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). We aimed to determine the decidual regulation of the oxidative-stress response by NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) in normal pregnancies and preeclamptic pregnancies with and without FGR. Decidual tissue from 145 pregnancies at delivery was assessed for oxidative stress, non-enzymatic antioxidant capacity, cellular NRF2- and KEAP1-protein expression, and NRF2-regulated transcriptional activation. Preeclampsia combined with FGR was associated with an increased oxidative-stress level and NRF2-regulated gene expression in the decidua, while decidual NRF2- and KEAP1-protein expression was unaffected. Although preeclampsia with normal fetal growth also showed increased decidual oxidative stress, NRF2-regulated gene expression was reduced, and KEAP1-protein expression was increased in areas of high trophoblast density. The trophoblast-dependent KEAP1-protein expression in preeclampsia with normal fetal growth indicates control of decidual oxidative stress by maternal–fetal interaction and underscores the importance of discriminating between preeclampsia with and without FGR.publishedVersio
Decidual and placental NOD1 is associated with inflammation in normal and preeclamptic pregnancies
Introduction: Inflammation is a normal physiological process that increases to harmful levels in preeclampsia. It affects the interaction between maternal immune cells and fetal trophoblasts at both sites of the maternal-fetal interface; decidua and placenta. The pattern recognition receptor nucleotide-binding oligomerization domain-containing protein (NOD)1 is expressed at both sites. This study aimed to characterize the cellular expression and functionality of NOD1 at the maternal-fetal interface of normal and preeclamptic pregnancies. Methods: Women with normal or preeclamptic pregnancies delivered by caesarean section were included. Decidual (n = 90) and placental (n = 91) samples were analyzed for NOD1 expression by immunohistochemistry and an automated image-based quantification method. Decidual and placental explants were incubated with or without the NOD1-agonist iE-DAP and cytokine responses measured by ELISA. Results: NOD1 was markedly expressed by maternal cells in the decidua and by fetal trophoblasts in both decidua and placenta, with trophoblasts showing the highest NOD1 expression. Preeclampsia with normal fetal growth was associated with a trophoblast-dependent increase in decidual NOD1 expression density. Compared to normal pregnancies, preeclampsia demonstrated stronger correlation between decidual and placental NOD1 expression levels. Increased production of interleukin (IL)-6 or IL-8 after in vitro explant stimulation confirmed NOD1 functionality. Discussion: These findings suggest that NOD1 contributes to inflammation at the maternal-fetal interface in normal pregnancies and preeclampsia and indicate a role in direct maternal-fetal communication. The strong expression of NOD1 by all trophoblast types highlights the importance of combined assessment of decidua and placenta for overall understanding of pathophysiological processes at the maternal-fetal interface
TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies
Inflammation and oxidative stress at the maternal‐fetal interface characterize the placental dysfunction that underlies the pregnancy disorder preeclampsia. Specialized fetal trophoblasts directly interact with leukocytes at both sites of the maternal‐fetal interface; the uterine wall decidua; and the placenta. TLR3 has been implicated in the harmful inflammation at the maternal‐fetal interface in preeclampsia, but the cellular involvement in the decidua and placenta has not been determined. This study aimed to characterize and quantify cell‐specific TLR3 expression and function at the maternal‐fetal interface in normal and preeclamptic pregnancies. TLR3 expression was assessed by immunohistochemistry and quantified by a novel image‐based and cell‐specific quantitation method. TLR3 was expressed at the maternal‐fetal interface by all decidual and placental trophoblast types and by maternal and fetal leukocytes. Placental, but not decidual, TLR3 expression was significantly higher in preeclampsia compared to normal pregnancies. This increase was attributed to placental intravillous tissue and associated with both moderate and severe placental dysfunction. TLR3 pathway functionality in the decidua and placenta was confirmed by TLR3 ligand‐induced cytokine response, but the TLR3 expression levels did not correlate between the two sites. In conclusion, functional TLR3 was broadly expressed by maternal and fetal cells at both sites of the maternal‐fetal interface and the placental intravillous expression was increased in preeclampsia. This suggests TLR3‐mediated inflammatory involvement with local regulation at both sites of the maternal‐fetal interface in normal and preeclamptic pregnancies
TLR3 expression by maternal and fetal cells at the maternal-fetal interface in normal and preeclamptic pregnancies
Inflammation and oxidative stress at the maternal‐fetal interface characterize the placental dysfunction that underlies the pregnancy disorder preeclampsia. Specialized fetal trophoblasts directly interact with leukocytes at both sites of the maternal‐fetal interface; the uterine wall decidua; and the placenta. TLR3 has been implicated in the harmful inflammation at the maternal‐fetal interface in preeclampsia, but the cellular involvement in the decidua and placenta has not been determined. This study aimed to characterize and quantify cell‐specific TLR3 expression and function at the maternal‐fetal interface in normal and preeclamptic pregnancies. TLR3 expression was assessed by immunohistochemistry and quantified by a novel image‐based and cell‐specific quantitation method. TLR3 was expressed at the maternal‐fetal interface by all decidual and placental trophoblast types and by maternal and fetal leukocytes. Placental, but not decidual, TLR3 expression was significantly higher in preeclampsia compared to normal pregnancies. This increase was attributed to placental intravillous tissue and associated with both moderate and severe placental dysfunction. TLR3 pathway functionality in the decidua and placenta was confirmed by TLR3 ligand‐induced cytokine response, but the TLR3 expression levels did not correlate between the two sites. In conclusion, functional TLR3 was broadly expressed by maternal and fetal cells at both sites of the maternal‐fetal interface and the placental intravillous expression was increased in preeclampsia. This suggests TLR3‐mediated inflammatory involvement with local regulation at both sites of the maternal‐fetal interface in normal and preeclamptic pregnancies
Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies
Preeclampsia is a hypertensive and inflammatory pregnancy disorder associated with cholesterol accumulation and inflammation at the maternal-fetal interface. Preeclampsia can be complicated with fetal growth restriction (FGR) and shares risk factors and pathophysiological mechanisms with cardiovascular disease. Cholesterol crystal mediated NLRP3 inflammasome activation is central to cardiovascular disease and the pathway has been implicated in placental inflammation in preeclampsia. Direct maternal-fetal interaction occurs both in the uterine wall decidua and at the placental surface and these aligned sites constitute the maternal-fetal interface. This study aimed to investigate cholesterol crystal accumulation and NLRP3 inflammasome expression by maternal and fetal cells in the uterine wall decidua of normal and preeclamptic pregnancies. Pregnant women with normal (n = 43) and preeclamptic pregnancies with (n = 28) and without (n = 19) FGR were included at delivery. Cholesterol crystals were imaged in decidual tissue by both second harmonic generation microscopy and polarization filter reflected light microscopy. Quantitative expression analysis of NLRP3, IL-1β and cell markers was performed by immunohistochemistry and automated image processing. Functional NLRP3 activation was assessed in cultured decidual explants. Cholesterol crystals were identified in decidual tissue, both in the tissue stroma and near uterine vessels. The cholesterol crystals in decidua varied between pregnancies in distribution and cluster size. Decidual expression of the inflammasome components NLRP3 and IL-1β was located to fetal trophoblasts and maternal leukocytes and was strongest in areas of proximity between these cell types. Pathway functionality was confirmed by cholesterol crystal activation of IL-1β in cultured decidual explants. Preeclampsia without FGR was associated with increased trophoblast dependent NLRP3 and IL-1β expression, particularly in the decidual areas of trophoblast and leukocyte proximity. Our findings suggest that decidual accumulation of cholesterol crystals may activate the NLRP3 inflammasome and contribute to decidual inflammation and that this pathway is strengthened in areas with close maternal-fetal interaction in preeclampsia without FGR
Cholesterol crystals and NLRP3 mediated inflammation in the uterine wall decidua in normal and preeclamptic pregnancies
Preeclampsia is a hypertensive and inflammatory pregnancy disorder associated with cholesterol accumulation and inflammation at the maternal-fetal interface. Preeclampsia can be complicated with fetal growth restriction (FGR) and shares risk factors and pathophysiological mechanisms with cardiovascular disease. Cholesterol crystal mediated NLRP3 inflammasome activation is central to cardiovascular disease and the pathway has been implicated in placental inflammation in preeclampsia. Direct maternal-fetal interaction occurs both in the uterine wall decidua and at the placental surface and these aligned sites constitute the maternal-fetal interface. This study aimed to investigate cholesterol crystal accumulation and NLRP3 inflammasome expression by maternal and fetal cells in the uterine wall decidua of normal and preeclamptic pregnancies. Pregnant women with normal (n = 43) and preeclamptic pregnancies with (n = 28) and without (n = 19) FGR were included at delivery. Cholesterol crystals were imaged in decidual tissue by both second harmonic generation microscopy and polarization filter reflected light microscopy. Quantitative expression analysis of NLRP3, IL-1β and cell markers was performed by immunohistochemistry and automated image processing. Functional NLRP3 activation was assessed in cultured decidual explants. Cholesterol crystals were identified in decidual tissue, both in the tissue stroma and near uterine vessels. The cholesterol crystals in decidua varied between pregnancies in distribution and cluster size. Decidual expression of the inflammasome components NLRP3 and IL-1β was located to fetal trophoblasts and maternal leukocytes and was strongest in areas of proximity between these cell types. Pathway functionality was confirmed by cholesterol crystal activation of IL-1β in cultured decidual explants. Preeclampsia without FGR was associated with increased trophoblast dependent NLRP3 and IL-1β expression, particularly in the decidual areas of trophoblast and leukocyte proximity. Our findings suggest that decidual accumulation of cholesterol crystals may activate the NLRP3 inflammasome and contribute to decidual inflammation and that this pathway is strengthened in areas with close maternal-fetal interaction in preeclampsia without FGR
Divergent Regulation of Decidual Oxidative-Stress Response by NRF2 and KEAP1 in Preeclampsia with and without Fetal Growth Restriction
Utero-placental development in pregnancy depends on direct maternal–fetal interaction in the uterine wall decidua. Abnormal uterine vascular remodeling preceding placental oxidative stress and placental dysfunction are associated with preeclampsia and fetal growth restriction (FGR). Oxidative stress is counteracted by antioxidants and oxidative repair mechanisms regulated by the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). We aimed to determine the decidual regulation of the oxidative-stress response by NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) in normal pregnancies and preeclamptic pregnancies with and without FGR. Decidual tissue from 145 pregnancies at delivery was assessed for oxidative stress, non-enzymatic antioxidant capacity, cellular NRF2- and KEAP1-protein expression, and NRF2-regulated transcriptional activation. Preeclampsia combined with FGR was associated with an increased oxidative-stress level and NRF2-regulated gene expression in the decidua, while decidual NRF2- and KEAP1-protein expression was unaffected. Although preeclampsia with normal fetal growth also showed increased decidual oxidative stress, NRF2-regulated gene expression was reduced, and KEAP1-protein expression was increased in areas of high trophoblast density. The trophoblast-dependent KEAP1-protein expression in preeclampsia with normal fetal growth indicates control of decidual oxidative stress by maternal–fetal interaction and underscores the importance of discriminating between preeclampsia with and without FGR