37 research outputs found

    Parameter estimation of electric power transformers using Coyote Optimization Algorithm with experimental verification

    Get PDF
    In this work, the Coyote Optimization Algorithm (COA) is implemented for estimating the parameters of single and three-phase power transformers. The estimation process is employed on the basis of the manufacturer's operation reports. The COA is assessed with the aid of the deviation between the actual and the estimated parameters as the main objective function. Further, the COA is compared with well-known optimization algorithms i.e. particle swarm and Jaya optimization algorithms. Moreover, experimental verifications are carried out on 4 kVA, 380/380 V, three-phase transformer and 1 kVA, 230/230 V, single-phase transformer. The obtained results prove the effectiveness and capability of the proposed COA. According to the obtained results, COA has the ability and stability to identify the accurate optimal parameters in case of both single phase and three phase transformers; thus accurate performance of the transformers is achieved. The estimated parameters using COA lead to the highest closeness to the experimental measured parameters that realizes the best agreements between the estimated parameters and the actual parameters compared with other optimization algorithms

    Hierarchical Optimization and Grid Scheduling Model for Energy Internet: A Genetic Algorithm-Based Layered Approach

    Get PDF
    The old economic and social growth model, characterized by centralized fossil energy consumption, is progressively shifting, and the third industrial revolution, represented by new energy and Internet technology, is gaining traction. Energy Internet, as a core technology of the third industrial revolution, aims to combine renewable energy and Internet technology to promote the large-scale use and sharing of distributed renewable energy as well as the integration of multiple complex network systems, such as electricity, transportation, and natural gas. This novel technology enables power networks to save energy. However, multienergy synchronization optimization poses a significant problem. As a solution, this study proposed an optimized approach based on the concept of layered control–collaborate optimization. The proposed method allows the distributed device to plan the heat, cold, gas, and electricity in the regional system in the most efficient way possible. Moreover, the proposed optimization model is simulated using a real-number genetic algorithm. It improved the optimal scheduling between different regions and the independence of distributed equipment with minimal cost. Furthermore, the inverse system and energy and cost saving rate of the proposed method are better than those of existing methods, which prove its effectiveness

    Solving the Optimal Power Flow Problem in Power Systems Using the Mountain Gazelle Algorithm

    No full text
    Optimal power flow (OPF) is one of the fundamental mathematical tools currently used to operate power systems within the technical limits of the transmission power system. To determine OPF, a highly non-linear complex problem, it is essential to research power system planning and control. This study presents a practical and trustworthy optimization approach for the OPF problem in electrical transmission power systems. Many intelligence optimization algorithms and methods have recently been developed to solve OPF, particularly the non-linear complex optimization problems. In this paper, a novel meta-heuristic algorithm called the mountain gazelle optimizer (MGO) is suggested for solving the OPF problem. The suggested algorithm applies the improved three single objective functions to the MGO algorithm for the best OPF issue control variable settings. Three objective functions that reflect the minimization of generating fuel cost, the minimizing of active power loss, and the minimizing of voltage deviations have been used to investigate and test the proposed algorithm on the standard IEEE 30-bus test system. The simulation results demonstrate the efficiency of the proposed MGO algorithm; the fuel costs are reduced by 11.407%, power losses are considerably decreased by 51.016%, and the voltage profile is significantly reduced by 91.501%. Furthermore, the outcomes produced by the proposed algorithm have also been contrasted with outcomes produced by applying other comparable optimization algorithms published in recent years. The optimal results are encouraging and demonstrate the resilience and efficacy of the suggested strategy

    An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems

    No full text
    This article suggests a novel enhanced slime mould optimizer (ESMO) that incorporates a chaotic strategy and an elitist group for handling various mathematical optimization benchmark functions and engineering problems. In the newly suggested solver, a chaotic strategy was integrated into the movement updating rule of the basic SMO, whereas the exploitation mechanism was enhanced via searching around an elitist group instead of only the global best dependence. To handle the mathematical optimization problems, 13 benchmark functions were utilized. To handle the engineering optimization problems, the optimal power flow (OPF) was handled first, where three studied cases were considered. The suggested scheme was scrutinized on a typical IEEE test grid, and the simulation results were compared with the results given in the former publications and found to be competitive in terms of the quality of the solution. The suggested ESMO outperformed the basic SMO in terms of the convergence rate, standard deviation, and solution merit. Furthermore, a test was executed to authenticate the statistical efficacy of the suggested ESMO-inspired scheme. The suggested ESMO provided a robust and straightforward solution for the OPF problem under diverse goal functions. Furthermore, the combined heat and electrical power dispatch problem was handled by considering a large-scale test case of 84 diverse units. Similar findings were drawn, where the suggested ESMO showed high superiority compared with the basic SMO and other recent techniques in minimizing the total production costs of heat and electrical energies

    Enhanced Teaching Learning-Based Algorithm for Fuel Costs and Losses Minimization in AC-DC Systems

    No full text
    The Teaching Learning-Based Algorithm (TLBA) is a powerful and effective optimization approach. TLBA mimics the teaching-learning process in a classroom, where TLBA’s iterative computing process is separated into two phases, unlike standard evolutionary algorithms and swarm intelligence algorithms, and each phase conducts an iterative learning operation. Advanced technologies of Voltage Source Converters (VSCs) enable greater active and reactive power regulation in these networks. Various objectives are addressed for optimal energy management, with the goal of attaining economic and technical advantages by decreasing overall production fuel costs and transmission power losses in AC-DC transmission networks. In this paper, the TLBA is applied for various sorts of nonlinear and multimodal functioning of hybrid alternating current (AC) and multi-terminal direct current (DC) power grids. The proposed TLBA is evaluated on modified IEEE 30-bus and IEEE 57-bus AC-DC networks and compared to other published methods in the literature. Numerical results demonstrate that the proposed TLBA has great effectiveness and robustness indices over the others. Economically, the reduction percentages of 13.84 and 21.94% are achieved for the IEEE 30-bus and IEEE 57-bus test systems when the fuel costs are minimized. Technically, significant improvement in the transmission power losses with reduction 28.01% and 69.83%, are found for the IEEE 30-bus and IEEE 57-bus test system compared to the initial case. Nevertheless, TLBA has faster convergence, higher quality for the final optimal solution, and more power for escaping from convergence to local optima compared to other published methods in the literature

    An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems

    No full text
    This article suggests a novel enhanced slime mould optimizer (ESMO) that incorporates a chaotic strategy and an elitist group for handling various mathematical optimization benchmark functions and engineering problems. In the newly suggested solver, a chaotic strategy was integrated into the movement updating rule of the basic SMO, whereas the exploitation mechanism was enhanced via searching around an elitist group instead of only the global best dependence. To handle the mathematical optimization problems, 13 benchmark functions were utilized. To handle the engineering optimization problems, the optimal power flow (OPF) was handled first, where three studied cases were considered. The suggested scheme was scrutinized on a typical IEEE test grid, and the simulation results were compared with the results given in the former publications and found to be competitive in terms of the quality of the solution. The suggested ESMO outperformed the basic SMO in terms of the convergence rate, standard deviation, and solution merit. Furthermore, a test was executed to authenticate the statistical efficacy of the suggested ESMO-inspired scheme. The suggested ESMO provided a robust and straightforward solution for the OPF problem under diverse goal functions. Furthermore, the combined heat and electrical power dispatch problem was handled by considering a large-scale test case of 84 diverse units. Similar findings were drawn, where the suggested ESMO showed high superiority compared with the basic SMO and other recent techniques in minimizing the total production costs of heat and electrical energies

    Enhanced Teaching Learning-Based Algorithm for Fuel Costs and Losses Minimization in AC-DC Systems

    No full text
    The Teaching Learning-Based Algorithm (TLBA) is a powerful and effective optimization approach. TLBA mimics the teaching-learning process in a classroom, where TLBA’s iterative computing process is separated into two phases, unlike standard evolutionary algorithms and swarm intelligence algorithms, and each phase conducts an iterative learning operation. Advanced technologies of Voltage Source Converters (VSCs) enable greater active and reactive power regulation in these networks. Various objectives are addressed for optimal energy management, with the goal of attaining economic and technical advantages by decreasing overall production fuel costs and transmission power losses in AC-DC transmission networks. In this paper, the TLBA is applied for various sorts of nonlinear and multimodal functioning of hybrid alternating current (AC) and multi-terminal direct current (DC) power grids. The proposed TLBA is evaluated on modified IEEE 30-bus and IEEE 57-bus AC-DC networks and compared to other published methods in the literature. Numerical results demonstrate that the proposed TLBA has great effectiveness and robustness indices over the others. Economically, the reduction percentages of 13.84 and 21.94% are achieved for the IEEE 30-bus and IEEE 57-bus test systems when the fuel costs are minimized. Technically, significant improvement in the transmission power losses with reduction 28.01% and 69.83%, are found for the IEEE 30-bus and IEEE 57-bus test system compared to the initial case. Nevertheless, TLBA has faster convergence, higher quality for the final optimal solution, and more power for escaping from convergence to local optima compared to other published methods in the literature

    Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Algorithm

    No full text
    In the last few years, the integration of renewable distributed generation (RDG) in the electrical distribution network (EDN) has become a favorable solution that guarantees and keeps a satisfying balance between electrical production and consumption of energy. In this work, various metaheuristic algorithms were implemented to perform the validation of their efficiency in delivering the optimal allocation of both RDGs based on multiple photovoltaic distributed generation (PVDG) and wind turbine distributed generation (WTDG) to the EDN while considering the uncertainties of their electrical energy output as well as the load demand’s variation during all the year’s seasons. The convergence characteristics and the results reveal that the marine predator algorithm was effectively the quickest and best technique to attain the best solutions after a small number of iterations compared to the rest of the utilized algorithms, including particle swarm optimization, the whale optimization algorithm, moth flame optimizer algorithms, and the slime mold algorithm. Meanwhile, as an example, the marine predator algorithm minimized the seasonal active losses down to 56.56% and 56.09% for both applied networks of IEEE 33 and 69-bus, respectively. To reach those results, a multi-objective function (MOF) was developed to simultaneously minimize the technical indices of the total active power loss index (APLI) and reactive power loss index (RPLI), voltage deviation index (VDI), operating time index (OTI), and coordination time interval index (CTII) of overcurrent relay in the test system EDNs, in order to approach the practical case, in which there are too many parameters to be optimized, considering different constraints, during the uncertain time and variable data of load and energy production

    A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks

    No full text
    This paper is concerned with an imperative operational problem, called the optimal power flow (OPF), which has several technical and economic points of view with respect the environmental concerns. This paper proposes a multiple-objective optimizer NSWOA (non-dominated sorting whale optimization algorithm) for resolving single-objective OPFs, as well as multi-objective frameworks. With a variety of technical and economic power system objectives, the OPF can be formulated. These objectives are treated as single- and multi-objective OPF issues that are deployed with the aid of the proposed NSWOA to solve these OPF formulations. The proposed algorithm modifies the Pareto ranking and analyzes the optimum compromise solution based on the optimal Euclidian distances. This proposed strategy ensures high convergence speed and improves search capabilities. To achieve this study, an IEEE 30-bus (sixth-generation unit system) is investigated, with eight scenarios studied that highlight technical and environmental operational needs. When compared to previous optimization approaches, the suggested NSWOA achieves considerable techno-economic improvements. Additionally, the statical analyses are carried out for 20 separate runs. This analysis proves the high robustness of the proposed NSWOA at low levels of standard deviation
    corecore