541 research outputs found

    Monitoring training loads in elite tennis

    Full text link
    Training load (TL) is influenced by both training volume and training intensity. A precise understanding of the TLs completed during training is crucial to achieve desirable training outcomes and to avoid overtraining. TL can be monitored in many different ways; however, we recommend the session-rate of perceived exertion (session-RPE) method for quantifying TL because of its low cost and because it is easy to understand and relatively simple to implement. In this report, we provide data regarding TLs collected during the 2008 Roland Garros Tournament. Our experience in tennis suggests the session-RPE method to be a valuable tool that can be used to control training and to avoid excessive TLs. We also believe that accurate monitoring of TL will enable the coach to better understand of the sports training process, ultimately leading to the improvement of performance

    Plant extractivism in light of game theory: a case study in northeastern Brazil

    Full text link

    A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data

    Get PDF
    Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.Peer ReviewedPostprint (published version
    • …
    corecore