3,029 research outputs found
Finite Rossby radius effects on vortex motion near a gap
This work investigates the effect of the Rossby radius of deformation on the motion of a vortex near a gap in an infinitely long barrier. A key parameter determining the behaviour of the vortex is a, the ratio of the Rossby radius of deformation to the width of the gap. Assuming quasi-geostrophic dynamics for a single-layer, reduced-gravity fluid, an integral equation is derived whose solution gives the velocity at any point in the fluid. The integral equation is solved numerically and the velocity field is integrated to give the trajectories of point vortices. Combined with the method of contour dynamics, the method can be used to compute the evolution of finite area patches of constant vorticity. The trajectories of point vortices and vortex patches are compared. The patches are initially circular and the centroids of those vortex patches that remain close to circular follow the trajectory and speed of their equivalent point vortices when appropriately normalised. The critical point vortex trajectory (the separatrix) which divides vortices that leap across the gap and those that pass through, is computed for various a. Decreasing the Rossby radius of deformation increases the tendency of vortices to pass through the gap. The effect of various background flows on both point vortex and vortex patch motion is also described
The JSpecView Project: an Open Source Java viewer and converter for JCAMP-DX, and XML spectral data files
The JSpecView Open Source project began with the intention of providing both a teaching and research tool for the display of JCAMP-DX spectra. The development of the Java source code commenced under license in 2001 and was released as Open Source in March 2006. The scope was then broadened to take advantage of the XML initiative in Chemistry and routines to read and write AnIML and CMLspect documents were added
Exploring cross-sectional associations between common childhood illness, housing and social conditions in remote Australian Aboriginal communities
Background:\ud
There is limited epidemiological research that provides insight into the complex web of causative and moderating factors that links housing conditions to a variety of poor health outcomes. This study explores the relationship between housing conditions (with a primary focus on the functional state of infrastructure) and common childhood illness in remote Australian Aboriginal communities for the purpose of informing development of housing interventions to improve child health.\ud
\ud
Methods:\ud
Hierarchical multi-level analysis of association between carer report of common childhood illnesses and functional and hygienic state of housing infrastructure, socio-economic, psychosocial and health related behaviours using baseline survey data from a housing intervention study.\ud
\ud
Results:\ud
Multivariate analysis showed a strong independent association between report of respiratory infection and overall functional condition of the house (Odds Ratio (OR) 3.00; 95%CI 1.36-6.63), but no significant association between report of other illnesses and the overall functional condition or the functional condition of infrastructure required for specific healthy living practices. Associations between report of child illness and secondary explanatory variables which showed an OR of 2 or more included: for skin infection - evidence of poor temperature control in the house (OR 3.25; 95%CI 1.06-9.94), evidence of pests and vermin in the house (OR 2.88; 95%CI 1.25-6.60); for respiratory infection - breastfeeding in infancy (OR 0.27; 95%CI 0.14-0.49); for diarrhoea/vomiting - hygienic state of food preparation and storage areas (OR 2.10; 95%CI 1.10-4.00); for ear infection - child care attendance (OR 2.25; 95%CI 1.26-3.99).\ud
\ud
Conclusion:\ud
These findings add to other evidence that building programs need to be supported by a range of other social and behavioural interventions for potential health gains to be more fully realised
Spatially valid proprioceptive cues improve the detection of a visual stimulus
Vision and proprioception are the main sensory modalities that convey hand location and direction of movement. Fusion of these sensory signals into a single robust percept is now well documented. However, it is not known whether these modalities also interact in the spatial allocation of attention, which has been demonstrated for other modality pairings. The aim of this study was to test whether proprioceptive signals can spatially cue a visual target to improve its detection. Participants were instructed to use a planar manipulandum in a forward reaching action and determine during this movement whether a near-threshold visual target appeared at either of two lateral positions. The target presentation was followed by a masking stimulus, which made its possible location unambiguous, but not its presence. Proprioceptive cues were given by applying a brief lateral force to the participant’s arm, either in the same direction (validly cued) or in the opposite direction (invalidly cued) to the on-screen location of the mask. The d′ detection rate of the target increased when the direction of proprioceptive stimulus was compatible with the location of the visual target compared to when it was incompatible. These results suggest that proprioception influences the allocation of attention in visual spac
The Rho family GEF FARP2 is activated by aPKC iota to control tight junction formation and polarity
The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a ‘RIPR’ motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain–kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6–aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι−FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors
Fast Benchtop Fabrication of Laminar Flow Chambers for Advanced Microscopy Techniques
Background: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. Method: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. Significance: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy
Biology of barley shoot fly Delia flavibasis Stein (Diptera: Anthomyiidae) on resistant and susceptible barley cultivars
The biology of barley shoot fly Delia flavibasis was studied using resistant (Dinsho and Harbu) and susceptible (Holker) barley cultivars at Sinana Agricultural Research Center, Ethiopia. A higher number of eggs was laid on Holker (17 eggs/female) than on Dinsho (11 eggs/female) or Harbu (12 eggs/female). However, there were no differences between cultivars in preoviposition and total reproductive periods. The shortest time required to complete larval, pupal and total developmental stages from egg to adult emergence occurred when the insect was reared on the cultivar Holker. Pupal weight, adult emergence and adult longevity did not differ between cultivars. The female to male sex ratio was 1:1. This study enabled us to understand the duration of each of the life stages of D.flavibasis, which will undoubtedly aid researchers and growers to design a sustainable management strategy against barley shoot fly
High-throughput UHPLC/MS/MS-based metabolic profiling using a vacuum jacketed column
In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10–15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10–120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84
Treatment effect of idebenone on inspiratory function in patients with Duchenne muscular dystrophy
Assessment of dynamic inspiratory function may provide valuable information about the degree and progression of pulmonary involvement in patients with Duchenne muscular dystrophy (DMD). The aims of this study were to characterize inspiratory function and to assess the efficacy of idebenone on this pulmonary function outcome in a large and well‐characterized cohort of 10–18 year‐old DMD patients not taking glucocorticoid steroids (GCs) enrolled in the phase 3 randomized controlled DELOS trial. We evaluated the effect of idebenone on the highest flow generated during an inspiratory FVC maneuver (maximum inspiratory flow; V'I,max(FVC)) and the ratio between the largest inspiratory flow during tidal breathing (tidal inspiratory flow; V'I,max(t)) and the V'I,max(FVC). The fraction of the maximum flow that is not used during tidal breathing has been termed inspiratory flow reserve (IFR). DMD patients in both treatment groups of DELOS (idebenone, n = 31; placebo: n = 33) had comparable and abnormally low V'I,max(FVC) at baseline. During the study period, V'I,max(FVC) further declined by −0.29 L/sec in patients on placebo (95%CI: −0.51, −0.08; P = 0.008 at week 52), whereas it remained stable in patients on idebenone (change from baseline to week 52: 0.01 L/sec; 95%CI: −0.22, 0.24; P = 0.950). The between‐group difference favoring idebenone was 0.27 L/sec (P = 0.043) at week 26 and 0.30 L/sec (P = 0.061) at week 52. In addition, during the study period, IFR improved by 2.8% in patients receiving idebenone and worsened by −3.0% among patients on placebo (between‐group difference 5.8% at week 52; P = 0.040). Although the clinical interpretation of these data is currently limited due to the scarcity of routine clinical practice experience with dynamic inspiratory function outcomes in DMD, these findings from a randomized controlled study nevertheless suggest that idebenone preserved inspiratory muscle function as assessed by V'I,max(FVC) and IFR in patients with DMD
Monotonicity of Fitness Landscapes and Mutation Rate Control
A common view in evolutionary biology is that mutation rates are minimised.
However, studies in combinatorial optimisation and search have shown a clear
advantage of using variable mutation rates as a control parameter to optimise
the performance of evolutionary algorithms. Much biological theory in this area
is based on Ronald Fisher's work, who used Euclidean geometry to study the
relation between mutation size and expected fitness of the offspring in
infinite phenotypic spaces. Here we reconsider this theory based on the
alternative geometry of discrete and finite spaces of DNA sequences. First, we
consider the geometric case of fitness being isomorphic to distance from an
optimum, and show how problems of optimal mutation rate control can be solved
exactly or approximately depending on additional constraints of the problem.
Then we consider the general case of fitness communicating only partial
information about the distance. We define weak monotonicity of fitness
landscapes and prove that this property holds in all landscapes that are
continuous and open at the optimum. This theoretical result motivates our
hypothesis that optimal mutation rate functions in such landscapes will
increase when fitness decreases in some neighbourhood of an optimum, resembling
the control functions derived in the geometric case. We test this hypothesis
experimentally by analysing approximately optimal mutation rate control
functions in 115 complete landscapes of binding scores between DNA sequences
and transcription factors. Our findings support the hypothesis and find that
the increase of mutation rate is more rapid in landscapes that are less
monotonic (more rugged). We discuss the relevance of these findings to living
organisms
- …