248 research outputs found

    A Tale of Two Animats: What does it take to have goals?

    Full text link
    What does it take for a system, biological or not, to have goals? Here, this question is approached in the context of in silico artificial evolution. By examining the informational and causal properties of artificial organisms ('animats') controlled by small, adaptive neural networks (Markov Brains), this essay discusses necessary requirements for intrinsic information, autonomy, and meaning. The focus lies on comparing two types of Markov Brains that evolved in the same simple environment: one with purely feedforward connections between its elements, the other with an integrated set of elements that causally constrain each other. While both types of brains 'process' information about their environment and are equally fit, only the integrated one forms a causally autonomous entity above a background of external influences. This suggests that to assess whether goals are meaningful for a system itself, it is important to understand what the system is, rather than what it does.Comment: This article is a contribution to the FQXi 2016-2017 essay contest "Wandering Towards a Goal

    Where is the ball? Behavioral and neural responses elicited by a magic trick

    Get PDF
    We present results from two experiments, in which subjects watched continuous videos of a professional magician repeatedly performing a maneuver in which a ball could “magically” appear under a cup. In all cases, subjects were asked to predict whether the ball would appear under the cup or not, while scalp EEG recordings were performed. Both experiments elicited strong and consistent behavioral and neural responses. In the first experiment, we used two blocks of videos with different probabilities of the ball appearing in the cup and found that, first, based on the behavioral responses, the subjects could track this probability change; and second, the different probabilities modulated the neural responses. In the second experiment, we introduced a control condition in which the magician performed the maneuver under the table, out of subjects' view. Comparing the two conditions (i.e., performing the maneuver within or out of the subjects' view), we found that, first, the magic trick dramatically biased the subjects' behavioral responses; and second, the two conditions led to differential neural responses, in spite of the fact that the stimulus triggering the evoked responses (seeing the ball in the cup) was exactly the same. Altogether, our results show how new insights into sensory and cognitive processing can be obtained using adapted magic tricks. Moreover, the approach of analyzing responses to continuous video presentations offers a more ecological setting compared to classic evoked potential paradigms, which are typically based on presenting static images flashed at the center of the screen

    Phase locking and resetting in human subthalamic neurons

    Get PDF
    Article accompanying a poster presentation for the 2012 Computational Neuroscience Annual Meeting. This article discusses the derivation of the evolution of empathic other-regarding social emotions as compared to non-social self-regarding emotions

    Foetal neural progenitors contribute to postnatal circuits formation ex vivo: an electrophysiological investigation

    Get PDF
    Neuronal progenitor cells (NPC) play an essential role in homeostasis of the central nervous system (CNS). Considering their ability to differentiate into specific lineages, their manipulation and control could have a major therapeutic impact for those CNS injuries or degenerative diseases characterized by neuronal cell loss. In this work, we established an in vitro co-culture and tested the ability of foetal NPC (fNPC) to integrate among post-mitotic hippocampal neurons and contribute to the electrical activity of the resulting networks. We performed extracellular electrophysiological recordings of the activity of neuronal networks and compared the properties of spontaneous spiking in hippocampal control cultures (HCC), fNPC, and mixed circuitries ex vivo. We further employed patch-clamp intracellular recordings to examine single-cell excitability. We report of the capability of fNPC to mature when combined to hippocampal neurons, shaping the profile of network activity, a result suggestive of newly formed connectivity ex vivo

    Fast, scalable, Bayesian spike identification for multi-electrode arrays

    Get PDF
    We present an algorithm to identify individual neural spikes observed on high-density multi-electrode arrays (MEAs). Our method can distinguish large numbers of distinct neural units, even when spikes overlap, and accounts for intrinsic variability of spikes from each unit. As MEAs grow larger, it is important to find spike-identification methods that are scalable, that is, the computational cost of spike fitting should scale well with the number of units observed. Our algorithm accomplishes this goal, and is fast, because it exploits the spatial locality of each unit and the basic biophysics of extracellular signal propagation. Human intervention is minimized and streamlined via a graphical interface. We illustrate our method on data from a mammalian retina preparation and document its performance on simulated data consisting of spikes added to experimentally measured background noise. The algorithm is highly accurate

    Shape similarity, better than semantic membership, accounts for the structure of visual object representations in a population of monkey inferotemporal neurons

    Get PDF
    The anterior inferotemporal cortex (IT) is the highest stage along the hierarchy of visual areas that, in primates, processes visual objects. Although several lines of evidence suggest that IT primarily represents visual shape information, some recent studies have argued that neuronal ensembles in IT code the semantic membership of visual objects (i.e., represent conceptual classes such as animate and inanimate objects). In this study, we investigated to what extent semantic, rather than purely visual information, is represented in IT by performing a multivariate analysis of IT responses to a set of visual objects. By relying on a variety of machine-learning approaches (including a cutting-edge clustering algorithm that has been recently developed in the domain of statistical physics), we found that, in most instances, IT representation of visual objects is accounted for by their similarity at the level of shape or, more surprisingly, low-level visual properties. Only in a few cases we observed IT representations of semantic classes that were not explainable by the visual similarity of their members. Overall, these findings reassert the primary function of IT as a conveyor of explicit visual shape information, and reveal that low-level visual properties are represented in IT to a greater extent than previously appreciated. In addition, our work demonstrates how combining a variety of state-of-the-art multivariate approaches, and carefully estimating the contribution of shape similarity to the representation of object categories, can substantially advance our understanding of neuronal coding of visual objects in cortex

    Ecological expected utility and the mythical neural code

    Get PDF
    Neural spikes are an evolutionarily ancient innovation that remains nature’s unique mechanism for rapid, long distance information transfer. It is now known that neural spikes sub serve a wide variety of functions and essentially all of the basic questions about the communication role of spikes have been answered. Current efforts focus on the neural communication of probabilities and utility values involved in decision making. Significant progress is being made, but many framing issues remain. One basic problem is that the metaphor of a neural code suggests a communication network rather than a recurrent computational system like the real brain. We propose studying the various manifestations of neural spike signaling as adaptations that optimize a utility function called ecological expected utility
    corecore