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Abstract Forecasting seizures based on information extracted from neuronal firing
has a great potential in controlling closed-loop neurostimulators. For the description
of neuronal firing patterns we use self-exiting point processes or Hawkes processes.
In fitting them to simulated data, using a large variety of models, we consider both
computability and reliability issues related to the maximum likelihood estimation
(MLE) method. The models are classified via a single parameter related to stability
regimes. The dependence of the accuracy of the individual parameter estimates on
different regimes will be explored. We demonstrate the applicability of the MLE
method to discriminate between different models with high confidence.

1 Introduction

1.1 A brief introduction to epilepsy

With a prevalence of 0,5-1% epilepsy is one of the most common neurological disor-
ders. Its most characteristic features are recurrent seizures. Despite that a number of
causes have already been identified, including genetic or cerebrovascular disorders,
brain injury and infections, 6 out of 10 cases are categorized as idiopathic, i.e. the
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main cause is unknown. Numerous anti-epileptic drugs are available and in some
cases even surgical options exist, such as excision of the epileptogenic focus or the
implantation of a neurostimulator. However, for approximately 30% of the patients
sufficient seizure control cannot be achieved, see [14].

The unexpectedness of the seizures has such an influence on the patients’ well-
being that reducing the frequency of seizures only moderately improves their quality
of life. Even in the case of rare seizures, the patient’s life is determined by the fear
of a forthcoming one [14]. Thus, it is generally accepted, that a system capable of
forecasting seizures would ameliorate the quality of life of patients. Furthermore,
it is hypothesized that combining such a system with a neurostimulator or a drug-
delivery pump the development of seizures could be avoided [4].

1.2 Seizure prediction and closed-loop neurostimulators in epilepsy

In order to forecast forthcoming seizures numerous methods have been proposed,
see [4]. Most often these are based on the analysis of the electrical signals of the
brain, such as the ones recorded on the scalp (electroencephalogram, EEG) or on
the surface of the brain (electrocorticogram, ECoG). It is assumed that focal seizures
starting from a distinct cortical area evolves as a cascade of events and thus can be
theoretically predicted, though we are not aware of a specific biomarker preceding
them [9]. Although some methods satisfy current statistical criteria (above chance),
applicability in a clinical setting requires more rigorous standards [4].

We note that experimental and modeling studies carried out hitherto suggest that
some seizures are inherently unpredictable. This is the case for primary generalized
absence seizures that involve both cortical hemispheres from the very beginning of
the onset of the seizure. A brain with this type of seizures is regarded as a bistable
system that switches between its states stochastically [9].

To date, there is only one implantable closed-loop system available on the mar-
ket, the Responsive Neurostimulation or RNS (NeuroPace, CA, USA). However,
this device detects seizures, instead of predicting them, and delivers electrical stim-
ulation to the area thought to be responsible for the seizure initiation. In contrast,
the Seizure Advisory System (NeuroVista, WA, USA) aimed to achieve real seizure
forecasting, but is not yet available on the market, [4].

The tools for seizure prediction mentioned above utilize the low-frequency com-
ponents of brain electrical signals called local field potentials (LFP) ranging from
approximately 0.1Hz to 200-300Hz. As an alternative the appropriate signals can
be filtered using a high pass filter with a cutoff frequency around 200-500Hz. The
resulting time-series (multi-unit activity, MUA) will contain primarily the action
potentials of neurons from the vicinity of the recording electrodes. With further pro-
cessing, called spike-sorting, these APs can be assigned to individual units (neurons)
based on their morphology. This provides us sequences of time-points indicating the
APs of distinct units termed single-unit activities (SUAs) [13]. As there is evidence
that epileptic activity is a result of the underlying pathological neuronal firing [10]
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the question arises if seizure prediction can be achieved based on the investigation
of SUAs [15]. In this paper we provide a framework for the statistical analysis of
SUAs using the theory of point processes, and give a summary of our extensive
simulation-based investigations.

2 Modeling single-unit activity via Hawkes processes

The series of time points of the APs is modeled with a so called point process, [2].
Mathematically this is a strictly increasing sequence of random time points 0= T0 <
T1 < T2 . . . with no accumulation point. For the sake of mathematical convenience
we will also consider two-sided point processes (Tn),−∞ < n < ∞, for which the
range of Tn-s is (−∞,+∞). For an excellent introduction see [1].

An alternative description of a point process is given by its counting process
defined for the one-sided point process as Nt = #{n : 0 < Tn ≤ t}. More generally,
we may define a counting measure for any interval (a,b] by the equation N(a,b] =
#{n : a < Tn ≤ b}. The internal history or the past of a point process is defined as
the σ -algebra

Ft = σ{N(a,b] : a < b≤ t}.

The definition of counting measure and internal history works equally for one-sided
and two-sided point processes. We define the integral of a random so-called pre-
dictable function ft ≥ 0, t ≥ 0 with respect to dNt . The heuristic meaning of pre-
dictability is that ft is the limit of left-continuous Ft -adapted processes. Then set∫

∞

0
ftdNt = ∑

n≥0
f (Tn).

It can be shown that associated with dNt is a so-called (predictable) intensity process
with the property that

E
(∫

∞

0
ftdNt

)
= E

(∫
∞

0
ftλtdt

)
.

A prominent class of point processes in the field of neuroscience, emulating the
firing pattern of a network of neurons interacting via APs in the brain, is the class of
(multi-variate) mutually exiting point processes, or Hawkes processes, introduced
in [8], see also [1], [2], [7] and [6].

A two-sided multivariate point process, (Ti,n), i = 1, . . . ,k, is a Hawkes process,
if its counting measures Ni(.) are shift invariant in time, with intensity functions

λi,t = µi +
k

∑
j=1

t∫
−∞

gi j(t− s)dN j,s, µi > 0, gi j(u)≥ 0. (1)
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Here µi are the background intensities, and gi j(u) are non-negative impulse response
functions (IRF). For the analysis of the firing pattern of a single unit we use a uni-
variate (self-exciting) Hawkes process, implicitly defined by the feedback loop

λt = µ +

t∫
−∞

g(t− s)dNs, µ > 0, g(u)≥ 0. (2)

Taking expectation on both side, and setting λ = Eλt , we get the equation λ =
µ + cλ , and the necessary (and sufficient, see [11]) condition for the existence of a
Hawkes process satisfying (2):

c =
∫

∞

0
g(t)dt < 1. (3)

The rational behind the application of Hawkes processes in the analysis of SUA
is that the burst-mode of neurons indicates a feedback-effect. The objective of the
present study is to model individual neurons’ firing pattern by fitting a univariate
Hawkes process via the maximum-likelihood method, see [12], and to provide a
summary of extensive experimental findings based on simulated data. In particular,
we explore the typical configurations in the parameter space and establish confi-
dence limits for discerning different regimes.

3 Statistical fitting of Hawkes processes

In order to fit Hawkes processes to real SUA data we consider a parametric class of
Hawkes processes with

g(u) = σ · eau,u≥ 0, with σ > 0, a < 0,

see [12]. In this case the stability criteria (3) becomes −σ/a < 1, or equivalently,
α := a+σ < 0. Here α is called the stability margin. Let η = (µ,a,σ), and assume
that our data are in fact generated by a Hawkes process defined above with true
parameter η∗. To estimate this we take an arbitrary feasible parameter η , satisfying
the conditions a+σ < 0 < µ, and define an intensity function λt(η):

λt(η) = µ +

t∫
0

g(t− s,η) dNs = µ +

t∫
0

σ · ea(t−s) dNs. (4)

The computation of the (conditional) log-likelihood function, under the condition
that dNt = 0 for t ≤ 0, is the mathematically substantiated heuristics that under
minimal conditions a point process is locally a Poisson process, see [3, 12]. Thus,
the negative log-likelihood function on the interval [0,T ] is, modulo constants,
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LT (η) =

T∫
0

λt(η)dt−
T∫

0

logλt(η)dNt . (5)

For a rigorous foundation we refer to [12], and [3] for a more up to date reference.
The apparently cumbersome computation of the (predictable) intensity λt(η) is

actually quite simple for an exponential IRF. Namely, it follows directly from (4),
by moving µ to the l.h.s. and then differentiating w.r.t. t, that on the interval Tn−1 <
t ≤ Tn, where no event occurs, we have

λTn−1+ = λTn−1 +σ , λt(η)−µ = ea(t−Tn−1)(λTn−1+(η)−µ). (6)

To bring the model closer to physiological reality we introduce an alternative
parameterization using the stability margin and the average intensity as parameters,
thus obtaining θ = (α,σ ,λ ). As a measure of the precision of our estimators we use
95% confidence-ellipsoids. We note that the Fisher information matrix, for a general
parameteric class of Hawkes processes, is obtained from (5) as follows:

I(θ ∗) = lim
T→∞

1
T ∑

0<Tn≤T

λθTn(θ
∗) ·λ T

θTn
(θ ∗)

λ 2
Tn
(θ ∗)

, (7)

where the subscript θ denotes differentiation w.r.t. θ , assuming the validity of an
appropriate strong law of large numbers.

4 Experimental results

We implemented the above method in MATLAB and tested its performance. The
accuracy of the MLE method was tested using simulated data generated by an im-
proved version of the procedure presented in [12]. The length of an experiment
is defined via the number of simulated events, which is in the range of 10.000 in
our case. The accuracy of the estimators are characterized by confidence ellipsoids
defined for level 95 %. The scope of experimental studies was focused on the sen-
sitivity of the method w.r.t. changes in model dynamics, including changes in the
orientation of the respective confidence ellipsoids.

On Figure 1 we present the confidence ellipsoids of two simulated SUAs, taken
as benchmark examples. The processes were simulated with N = 10.000 events with
θ = (−2.1;0.9;1.0) and θ = (−0.6;2.4;1.0), denoted with green and red, respec-
tively. In order to enhance our potential to discriminate between two models we can
increase the number of observed events. We note that the volume of a confidence
ellipsoid, denoted by VCE , corresponding to a fixed model, based on N events is pro-
portional to N−3/2. However, in a real-life situation when estimating the dynamics
during the preictal period, the number of events associated with a stationary regime
is limited due to changes in the dynamics close to the onset of a seizure.
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Fig. 1 95% confidence ellipsoids of the two reference examples.

We studied the influence of different parameter setting on the accuracy of the
estimation. First we note that we may chose λ = 1 for simplicity, since the estima-
tion of this parameter is independent from that of the others. A major characteristic
of a Hawkes process is its the integral of the IRF, denoted by c, see (3), defining
different regimes w.r.t. stability. A second feature that we considered is simply the
attenuation determined by the parameter a.

We simulated numerous Hawkes processes (9 regimes at 10 different a-s, N =
10.000), and computed the volume of the confidence ellipsoids (VCE ). The depen-
dence of VCE on the particular regime c and the attenuation a is demonstrated on
Figure 2. On the left hand side it is seen that VCE is a monotone decreasing function
of a for each regime. On the right hand side VCE is depicted as a function of c for
various choices of a. It is interesting to observe that estimation problem becomes
more difficult for values of c close to 1 or 0.
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Fig. 2 Left: VCE vs. a. Right: VCE vs. c
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In order to understand the details about the increased uncertainty of the estima-
tors when c is close to 1 or 0, we compute the asymptotic standard deviation (ASD)
of individual parameters, which are simply the diagonal elements of I−1(θ ∗). To
make different parameter-settings comparable we normalized these values by V 1/3

CE ,
see Figure 3. These results show that the overall uncertainty, when c is close to 1 or
0, is due to the uncertainty in the estimation of α for c close 0, and that of λ for c
close 1. The accuracy of the estimation of σ is quite satisfactory for all values of c.
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Fig. 3 Normalized asymptotic standard deviation (NASD) of α and λ , respectively.

The shift in the degree of uncertainty between α and λ indicates a change in the
orientation of the confidence ellipsoid. This finding may be used to detect regime-
changes more efficiently, and ultimately to detect changes in the brain-state.

5 Discussion

Forecasting seizures with application in closed-loop neurostimulators is of great
need for patients with therapy-resistant epilepsy. With the expanding arsenal of clin-
ical neurophysiology it is becoming possible to monitor patients’ brain-activity at
a cellular level [16]. Therefore seizure prediction based on information extracted
from neuronal firing is a promising research topic.

A convenient framework to describe neuronal firing patterns in a compressed
manner are self-exiting point processes or Hawkes processes. When fitting Hawkes
processes to simulated or real-world data critical factors are both the computability
and the statistical reliability of the MLE. In the present experimental mathemati-
cal research we explored the sensitivity of the MLE method for the class Hawkes
processes with exponential IRF for a large variety of models. The models were clas-
sified via a single parameter related to stability, defining different regimes. We found
that the estimation accuracy of parameters (pattern of uncertainty) highly depends
on the actual regime.
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The ultimate measure of accuracy is the applicability of the methods to discrim-
inate between different brain-states based on experimental data. A further step to-
wards real life applications is the integration of our experimental findings for the
off-line MLE method into the development of a reliable on-line MLE method along
the lines proposed back in [5], to be discussed in a forthcoming paper.
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