51,171 research outputs found
Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions
Magnetic lateral multilayers have been fabricated on weak perpendicular
magnetic anisotropy amorphous Nd-Co films in order to perform a systematic
study on the conditions for controlled nucleation of topological defects within
their magnetic stripe domain pattern. A lateral thickness modulation of period
is defined on the nanostructured samples that, in turn, induces a lateral
modulation of both magnetic stripe domain periods and average
in-plane magnetization component . Depending on lateral multilayer
period and in-plane applied field, thin and thick regions switch independently
during in-plane magnetization reversal and domain walls are created within the
in-plane magnetization configuration coupled to variable angle grain boundaries
and disclinations within the magnetic stripe domain patterns. This process is
mainly driven by the competition between rotatable anisotropy (that couples the
magnetic stripe pattern to in-plane magnetization) and in-plane shape
anisotropy induced by the periodic thickness modulation. However, as the
structural period becomes comparable to magnetic stripe period ,
the nucleation of topological defects at the interfaces between thin and thick
regions is hindered by a size effect and stripe domains in the different
thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
Sketch-based Influence Maximization and Computation: Scaling up with Guarantees
Propagation of contagion through networks is a fundamental process. It is
used to model the spread of information, influence, or a viral infection.
Diffusion patterns can be specified by a probabilistic model, such as
Independent Cascade (IC), or captured by a set of representative traces.
Basic computational problems in the study of diffusion are influence queries
(determining the potency of a specified seed set of nodes) and Influence
Maximization (identifying the most influential seed set of a given size).
Answering each influence query involves many edge traversals, and does not
scale when there are many queries on very large graphs. The gold standard for
Influence Maximization is the greedy algorithm, which iteratively adds to the
seed set a node maximizing the marginal gain in influence. Greedy has a
guaranteed approximation ratio of at least (1-1/e) and actually produces a
sequence of nodes, with each prefix having approximation guarantee with respect
to the same-size optimum. Since Greedy does not scale well beyond a few million
edges, for larger inputs one must currently use either heuristics or
alternative algorithms designed for a pre-specified small seed set size.
We develop a novel sketch-based design for influence computation. Our greedy
Sketch-based Influence Maximization (SKIM) algorithm scales to graphs with
billions of edges, with one to two orders of magnitude speedup over the best
greedy methods. It still has a guaranteed approximation ratio, and in practice
its quality nearly matches that of exact greedy. We also present influence
oracles, which use linear-time preprocessing to generate a small sketch for
each node, allowing the influence of any seed set to be quickly answered from
the sketches of its nodes.Comment: 10 pages, 5 figures. Appeared at the 23rd Conference on Information
and Knowledge Management (CIKM 2014) in Shanghai, Chin
The properties of the stellar populations in ULIRGs I: sample, data and spectral synthesis modelling
We present deep long-slit optical spectra for a sample of 36 Ultraluminous
Infrared Galaxies (ULIRGs), taken with the William Herschel Telescope (WHT) on
La Palma with the aim of investigating the star formation histories and testing
evolutionary scenarios for such objects. Here we present the sample, the
analysis techniques and a general overview of the properties of the stellar
populations. Spectral synthesis modelling has been used in order to estimate
the ages of the stellar populations found in the diffuse light sampled by the
spectra in both the nuclear and extended regions of the target galaxies. We
find that adequate fits can be obtained using combinations of young stellar
populations (YSPs,t_YSP<=2 Gyr), with ages divided into two groups: very young
stellar populations (VYSPs, t_VYSP <=100 Myr) and intermediate-young stellar
populations (IYSPs, 0.1 < t_IYSP <= 2 Gyr). Our results show that YSPs are
present at all locations of the galaxies covered by our slit positions, with
the exception of the northern nuclear region of the ULIRG IRAS 23327+2913.
Furthermore, VYSPs are presents in at least 85% of the 133 extraction apertures
used for this study. Old stellar populations (OSPs, t_{OSP} > 2 Gyr) do not
make a major contribution to the optical light in the majority of the apertures
extracted. In fact they are essential for fitting the spectra in only 5% (7) of
the extracted apertures. The estimated total masses for the YSPs (VYSPs+IYSPs)
are in the range 0.18 x 10^{10} <= M_YSP <= 50 x 10^{10} Msun. We have also
estimated the bolometric luminosities associated with the stellar populations
detected at optical wavelengths, finding that they fall in the range 0.07 x
10^{12} < L_bol < 2.2 x 10^{12} Lsun. In addition, we find that reddening is
significant at all locations in the galaxies.Comment: accepted for publication in MNRA
Emergent Nesting of the Fermi Surface from Local-Moment Description of Iron-Pnictide High-Tc Superconductors
We uncover the low-energy spectrum of a t-J model for electrons on a square
lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying
Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of
one hole roaming over a 4 x 4 x 2 lattice. Hopping matrix elements are set to
produce hole bands centered at zero two-dimensional (2D) momentum in the
free-electron limit. Holes can propagate coherently in the t-J model below a
threshold Hund coupling when long-range antiferromagnetic order across the d+ =
3d(x+iy)z and d- = 3d(x-iy)z orbitals is established by magnetic frustration
that is off-diagonal in the orbital indices. This leads to two hole-pocket
Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate
spin-density wave (cSDW) that exists above the threshold Hund coupling results
in emergent Fermi surface pockets about cSDW momenta at a quantum critical
point (QCP). This motivates the introduction of a new Gutzwiller wavefunction
for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta
indicates that the dispersion of the nested band of one-particle states that
emerges is electron-type. Increasing Hund coupling past the QCP can push the
hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy
level, in agreement with recent determinations of the electronic structure of
mono-layer iron-selenide superconductors.Comment: 41 pages, 12 figures, published versio
Spatial analysis of storm depths from an Arizona raingage network
Eight years of summer rainstorm observations are analyzed by a dense network of 93 raingages operated by the U.S. Department of Agriculture, Agricultural Research Service, in the 150 km Walnut Gulch experimental catchment near Tucson, Arizona. Storms are defined by the total depths collected at each raingage during the noon-to-noon period for which there was depth recorded at any of the gages. For each of the resulting 428 storm days, the gage depths are interpolated onto a dense grid and the resulting random field analyzed to obtain moments, isohyetal plots, spatial correlation function, variance function, and the spatial distribution of storm depth
Proving strong magnetic fields near to the central black hole in the quasar PG0043+039 via cyclotron lines
The optical luminous quasar PG0043+039 has not been detected before in deep
X-ray observations indicating the most extreme optical-to-X-ray slope index
of all quasars. This study aims to detect PG0043+039 in a deep
X-ray exposure. Furthermore, we wanted to check out whether this object shows
specific spectral properties in other frequency bands. We took deep X-ray
(XMM-Newton), far-ultraviolet (HST), and optical (HET, SALT telescopes) spectra
of PG0043+039 simultaneously in July 2013. We just detected PG0043+039 in our
deep X-ray exposure. The steep gradient is
consistent with an unusual steep gradient with
seen in the UV/far-UV continuum. The optical/UV
continuum flux has a clear maximum near 2500 {\AA}. The UV spectrum is very
peculiar because it shows broad humps in addition to known emission lines. A
modeling of these observed humps with cyclotron lines can explain their
wavelength positions, their relative distances, and their relative intensities.
We derive plasma temperatures of T 3keV and magnetic field strengths
of B 2 G for the line-emitting regions close to the
black hole.Comment: 4 pages, 3 figures, Astronomy & Astrophysics in pres
Confinement of Spin and Charge in High-Temperature Superconductors
By exploiting the internal gauge-invariance intrinsic to a spin-charge
separated electron, we show that such degrees of freedom must be confined in
two-dimensional superconductors experiencing strong inter-electron repulsion.
We also demonstrate that incipient confinement in the normal state can prevent
chiral spin-fluctuations from destroying the cross-over between strange and
psuedo-gap regimes in under-doped high-temperature superconductors. Last, we
suggest that the negative Hall anomaly observed in these materials is connected
with this confinement effect.Comment: 12 pages, 1 postscript figure, to appear in PRB (RC), May 199
- …