70 research outputs found

    The Evolution of a Capacity to Build Supra-Cellular Ropes Enabled Filamentous Cyanobacteria to Colonize Highly Erodible Substrates

    Get PDF
    Several motile, filamentous cyanobacteria display the ability to self-assemble into tightly woven or twisted groups of filaments that form macroscopic yarns or ropes, and that are often centimeters long and 50-200 microm in diameter. Traditionally, this trait has been the basis for taxonomic definition of several genera, notably Microcoleus and Hydrocoleum, but the trait has not been associated with any plausible function.Through the use of phylogenetic reconstruction, we demonstrate that pedigreed, rope-building cyanobacteria from various habitats do not form a monophyletic group. This is consistent with the hypothesis that rope-building ability was fixed independently in several discrete clades, likely through processes of convergent evolution or lateral transfer. Because rope-building cyanobacteria share the ability to colonize geologically unstable sedimentary substrates, such as subtidal and intertidal marine sediments and non-vegetated soils, it is also likely that this supracellular differentiation capacity imparts a particular fitness advantage in such habitats. The physics of sediment and soil erosion in fact predict that threads in the 50-200 microm size range will attain optimal characteristics to stabilize such substrates on contact.Rope building is a supracellular morphological adaptation in filamentous cyanobacteria that allows them to colonize physically unstable sedimentary environments, and to act as successful pioneers in the biostabilization process

    Characterization of Microbialites and Microbial Mats of the Laguna Negra Hypersaline Lake (Puna of Catamarca, Argentina)

    Get PDF
    Microbial carbonates provide an invaluable tool to understand biogeochemical processes in aqueous systems, especially in lacustrine and marine environments. Lakes are strongly sensitive to climatically driven environmental changes, and microbialites have recently been shown to provide a record of these changes. Unraveling physicochemical and microbiological controls on carbonates textures and geochemistry is necessary to correctly interpret these signals and the microbial biosphere record within sedimentary carbonates. The Laguna Negra is a high-altitude hypersaline Andean lake (Puna of Catamarca, Argentina), where abundant carbonate precipitation takes place and makes this system an interesting example that preserves a spectrum of carbonate fabrics reflecting complex physical, chemical, and biological interactions. The extreme environmental conditions (high UV radiation, elevated salinity, and temperature extremes) make the Laguna Negra a good analogue to some Precambrian microbialites (e.g., Tumbiana Fm., Archean, Australia). In addition, the discovery of ancient evaporating playa-lake systems on Mars’ surface (e.g., ShalbatanaVallis, Noachian, Mars) highlights the potential of Laguna Negra to provide insight into biosignature preservation in similar environments, in both terrestrial and extraterrestrial settings, given that microbial processes in the Laguna Negra can be studied with remarkable detail.Fil: Boidi, Flavia Jaquelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Mlewski, Estela Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gomez, Fernando Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Gérard, Emmanuelle. Centre National de la Recherche Scientifique; Franci

    Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms

    Get PDF
    Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0–2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0–2-mm section of sediment were only significant at days 12 to 28, and the 2–4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2–4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods

    Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering

    Get PDF
    The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review
    corecore