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14.1 Abstract

Microbial carbonates provide an invaluable tool to understand biogeochemical
processes in aqueous systems, especially in lacustrine and marine environments. Lakes are
strongly sensitive to climatically-driven environmental changes and microbialites have
recently shown to provide a record of these changes. Unraveling physicochemical and
microbiological controls on carbonates textures and geochemistry is necessary to correctly
interpret these signals and the microbial biosphere record within sedimentary carbonates.

The Laguna Negra is a high-altitude hypersaline Andean lake (Puna of Catamarca,
Argentina), where abundant carbonate precipitation takes place and makes this system an
interesting example that preserves a spectrum of carbonate fabrics that reflect complex
physical, chemical, and biological interactions. The extreme environmental conditions (high
UV radiation, elevated salinity, and temperature extremes) make the Laguna Negra a good
analogue to some Precambrian microbialites (e.g., Tumbiana Fm., Archean, Australia). In
addition, the discovery of ancient evaporating playa-lake systems on Mars surface (e.g.,
ShalbatanaVallis, Noachian, Mars) highlights the potential of Laguna Negra to provide
insight into biosignature preservation in similar environments. Given that microbial processes
in the Laguna Negra can be studied with remarkable detail, this may provide insight into
biosignature preservation in both, terrestrial and extraterrestrial settings.

14.2 Introduction

The Puna-Altiplano region (including northwest Argentina, north Chile and south
Bolivia) has become an interesting region to study microbial mineralization processes. The
convergence of factors such as extreme environmental conditions, particularly strong
negative hydrological balance, favors the development of these mineralizing systems, and of
extremophile microbial communities. This, together with a favorable local geology and
geomorphology, facilitate the formation of closed lakes and groundwater springs which are
saturated in minerals, including carbonates. Thus, a highly mineralizing setting together with
physico-chemical and microbiological processes trigger carbonate precipitation and produce
a set of diverse organo-sedimentary structures usually referred as microbialites (cf. Burne and
Moore 1987). Some ofthe Puna-Altiplanomicrobialites resemble those observed in the
ancient geological record, for example stromatolites, which are the oldest evidence of life on
Earth (Allwood et al 2006). Thus, thesemicrobialites systems provide a unique opportunity to
apply an integrated geobiological approach, to gain insight to understand microbial
mineralization processes and biosignatures preservation.

The Laguna Negra (LN) is an interesting system that called our attention 10 years ago
given the presence of an extensive plain with abundant carbonate precipitation (Figure 14.1).



The evaporative sedimentary environment, the diversity of microbial mat types and the
combination of physico-chemical and microbial processes influencing carbonate precipitation
and carbonates geochemistry makes this place an excellent natural laboratory that shows
strong similarities with some ancient microbial mineralizing systems, including the
Precambrian microbialites of the Tumbiana Formation (Australia, Buick 1992, Awramik and
Buchheim 2009) and the Strelley Pool Chert Formation (Australia, Allwood et al 2006). Here
some recent findings are summarized to discuss the combination of microbial and
physicochemical processes involved in carbonate precipitation and microbialite formation.
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Figure 14.1 Left: Location map of the study area (red square). Center: Panoramic view of the LN, the Stromatolite Belt (SB)
and the Saline Plain. Right: Spatial zoning of the LNStromatolite Belt.

14.3 Geological and environmental setting

The LN is a shallow (<2 m) hypersaline lake located at 4200 meters above sea-level
with an area of ~8.63 km? and, as most lakes in the region, a strongly negative water balance.
It is part of the Laguna Verde Complex, which is in northwest Argentine, at the southern end
of the Puna Plateau (Catamarca province), a high-altitude plateau in the Andean region
(Figure 14.1). The high-altitude, hot and dry climate combine to favor the precipitation of
evaporites (halite, gypsum, calcite, etc) and set extreme conditions where microbial mats
adapted to hypersalinity as well as high UV radiation influx develop.

The microbial mats distribution and carbonate precipitation are mostly spatially
restricted to the region where groundwater springs mixes with the main lake, a region of ~0.3
km? that it is called the Stromatolite Belt (Gomez et al 2014). Geochemical modeling
suggests that this water mixing increases the saturation state of carbonate minerals favoring
abundant carbonate precipitation (Gomez et al 2014). The presence of microbial mats also
influences carbonate precipitation processes, the resulting textures and geochemical
signatures (Gomez et al 2018, Buongiorno et al 2018).

14.4 Microbialite spatial zoning in the Laguna Negra

The Stromatolite Belt presents three main distinct zones mostly defined by a
combination of sedimentary environment, microbialite morphology, water depth and salinity:

Zone 1: a proximal belt that is colonized by salt-marsh grass in the region of freshwater
input,

Zone 2: an intermediate zone consisting of microbial ponds that lack both oncolitic structures
and mineralization,

Zone 3: the main belt of carbonate oncoidalmicrobialites and crusts. This zone can also be
separated into four zones;Zone 3A where laminar crusts are common, Zone 3B with
centimeter-scale carbonate gravel aggregates and Zone 3C where oncoids are primarily
concentrated, and Zone 3D is represented mainly by peloidal to micritic carbonate sediment,



locally interlayered with gypsum or organic-rich laminae. The transition between Zones 3C
and 3D is where stromatolites are typically represented, and these where not previously
described by Gomez et al (2014) nor (2018).

14.6 Microbialites macro-morphologies

Previous work allowed to recognize and to characterize the different carbonate
microbialites morphologies within the LN (Gomez et al 2014, Gomez et al 2018,Mlewskiet
al 2018, Buongiorno et al 2018). Three main types of macro-morphologies (at the decimeter-
size scale) have been documented in the LN and here their main macroscopic features are
summarized (Figures 14.2 to 14.6, and Table 1). For details about the different microbialites
micro-textures see Table 1 (for a deeper analysis see Gomez et al 2014 and 2018, Mlewskiet
al 2018). These structures include Laminar Crusts, Oncoids and Stromatolites.

Figure 14.2 Polished slab (left) and thin-section (riht) of the LN laminar crusts.

Laminar crusts: are present in the region that is better connected with the main lake, on
the northwest side of the Stromatolite Belt. These are represented by millimeter to decimeter
carbonate crusts encrusting volcanic rocks, carbonate sediments and other microbial
structures as well as organic remains (e.g. flamingoes feathers) (Figure 14.2). These can have
a patchy distribution or form laterally continuous crusts (at a meter scale), covering loose or
cemented carbonate sediments (peloidal and nodular carbonates). Carbonate plates formed by
laminar crusts can coalesce to form more complex structures and can have overgrowths and
show different growth stages due to movement and rotation by currents or cryoturbation
processes. Laminar crusts can also develop dome-shaped morphologies, occasionally
showing concentric growth patterns (Figure 14.2). In addition, oriented and elongated
structures are common, where these develop according to the main currents related to the
prevailing winds (from north west to south east) (Figure 14.3). Although regular isopachous
laminae (Figure 14.2) are the main building blocks of the laminar crusts (see details in Table
1), it worth mentioning that the wind-oriented structures, in cross-section, develop more
complex micro-textures. These include columnar, shrub-like to dendritic and micro-
stromatolite microfabrics, that resemble microbially-influenced structures but related to
abiotic carbonate precipitation. These are formed by preferential growth where advective-
diffusive flux provides calcium and carbonate ions (Figure 14.3), in an analogous way to
silica and carbonate dendrites developed under unidirectional flow (see for example
numerical models by Hawkins et al 2013 and 2014). These dendrite-shrubs-rich layers
alternate with the previously described smooth laminar crusts.

Interpretation: Given the absence of microbial mats, and the macro-morphologies and
micro-textures described (e.g. lamina regularity and degree of inheritance, lack of organic
remains within the lamina,etc), these structures have been interpreted as predominantly
chemically precipitated carbonates, triggered by oversaturation related to water mixing



(Gomez et al 2014), strong CO, degassing and evaporation (see Gomez et al 2014,
Buongiorno et al 2018, Beeler et al in press).

Figure 14.3 Current-oriented structures observed in the Zone 3A. a) Hand-sample, b) Polished slab in cross-
section. The white dotted line marks the location of the sediment-water interface during sampling. c) Closer view of the
polished slab showing the complex micro-columnar to dendritic internal structure with preferential growth on the side
affected by currents. The black arrows indicate the current transport direction. d-e) Thin-sections showing the micro-
columnar to dendritic micritic to micro-spar-rich textures that alternate with more regular laminar, smooth isopachous
laminae. f) On the left side panel, it can be seen the resulting modeled columnar to dendritic structures developed due to
mineral precipitation under unidirectional flow, and on the right side an example of silica micro-columns and dendrites (both
pictures taken from Hawkins et al 2013, 2014).

Oncoids: these are typically located in the central area of the Stromatolite Belt and are
composed by concentrically laminated, centimeter to decimeter spheroidal structures (up to
~35 cm). Morphologically these are represented by discs, spheres and flattened domes that
can coalesce to form more complex, composite structures (Figure 14.4). Oncoids grow by the
accretion of smooth to irregular and overlapping laminae, showing lateral protrusions,
typically formed at the water-sediment as well as air-water interface. External surface can be
smooth or can show pillar-like to shrub-shaped millimeter scale protrusions and
ornamentations (Figure 14.4), particularly on the side affected by wind and currents. Oncoid
rotation, particularly by cryoturbation, is also common producing more complex overlapping
overgrowths. Oncoids are typically associated with well-stratified pinkish to orange microbial
mats (Figure 14.8) but can also be colonized by cyanobacteria-rich microbial mats (Rivularia
halophila) (Mleswkiet al 2018, Shalyginet al 2018) which produce a different set of
carbonates micro-textures and lateral overgrowths (Table 1, see Gomez et al 2018 and
Mlewskiet al 2018 for details). Although oncoids are subspherical in shape, they can show
asymmetric growth, occasionally expanded below the sediment-water interface, thus showing
both hydrogenetic and diagenetic growth (above and below the sediment-water interface
respectively) (Figure 14.5) in an analogous way to manganese nodules observed in the deep
sea (Figure 14.5, right), being morphologically similar and suggesting similar diffusive-
reactive processes involved in oncoids growth (Baker and Beaudoin 2013).



Figure 14.4 Polished slab (left) and thin- sectlon (right) of the LNonc0|ds

Interpretation: Given that oncoids are closely associated with microbial mats, the
recorded morphologies and the diverse set of micro-textures observed in previous work
(Table 1), these structures are interpreted as microbially influenced structures. The microbial
influence is particularly observed in the development of microfabrics as well as the
geochemical signatures preserved in the carbonates (Gomez et al 2014, Buongiorno et al
2018). Despite this, physicochemical processes (mostly water mixing, CO, degassing and
evaporation) are also particularly important to trigger carbonate precipitation (Gomez et al
2014, 2018, Buongiorno et al 2018, Beeler et al in press). The observed differential growth
patterns, where oncoids grow bigger in the diagenetic zone (below the sediment-water
interface), suggests that at least in some cases growth rates are higher in the anoxic zones.
This is probably related to the influence of anoxic microbial metabolisms (likes sulfate
reduction) that are known to increase alkalinity and thus carbonate precipitation.

Laguna Negra oncoids A mixed manganese nodule

- Differences in surface texture

Figure 14.5- a) Carbonate oncoids of the Laguna Negra Stromatolite Belt where hydrogenetic and diagenetic
growth zones are observed and marked by the sediment-water interface (white dotted lines). b) Manganese nodules with the
same growth patters shown for comparative purposes and suggesting comparable growth mechanisms (from Baker and
Beaudoin 2013).

Stromatolites: Stromatolites here represent centimeter to decimeter-scale laminated
structures (up to 25 cm) that typically have a planar to columnar shape (Figure 14.6) that
resemble classic stromatolites. These are observed on the east side of the Stromatolite Belt
(transition between Zones 3C and D), associated to dark greenish to black microbial mats and
biofilms and usually are encrusting previous structures (typically oncoids) (Figure 14.6), as



well as loose to cemented sediments and other carbonate crusts. The columnar structures are
usually centimeter-size and represent mini-stromatolites (Figure 14.6). The main difference
with oncoids and laminar structures is in the shape (planar to columnar) and in the micro-
textures, predominantly irregular, crenulated micritic to micro-peloidal crusts that preserve
abundant organic remains (Figure 14.6 and Table 1).

Interpretation: Given the crenulate and overlapping, irregularly shaped micrite-to
micro-spar-rich laminae, which also preserve abundant organic remains, these are also
interpreted as microbially influenced structures, as typically observed in other microbialites
(Riding 2008). Since these structures are usually nucleated on oncoids (Figure 14.6), it
suggests changes in growth patterns probably triggered by local environmental changes as
well as in the microbial mat type.

Table 14.1 Summary of the main micro-textures preserved in the LNmicrobialites (for details see Gomez et al 2014, 2018,
Mlewskiet al 2018, Buongiorno et al 2018).

Microbialite Type Microfabric Elements Observations

Laminar Crusts - mm
to cm thick laminated
crusts forming patchy
to laterally extensive
pavements

Isopachous laminae

Microbial mats are typically absent. Remarkable regular
isopachous lamina with high degree of inheritance during
lamina accretion. This results in translation and gradual
smoothing of surface morphology. Lamina composed by
closely spaced acicular calcite crystals, individual laminae
(50-100 pm thick) are separated by micrite isopahcous
laminae (10-50 pum thick) composed by irregularly shaped
anhedral to subhedral calcite crystals. Smaller scale
lamination (< 5 pm) given by luminescence changes
related to variable trace elements content.

Oncoids - cm- to dm-
scale concentrically
laminated

discs, spheres and
flattened domes

Alternating micritic and
botryoidal laminae (cf.
Gomez et al 2014).

Mostly developed in ponds with pinkish to orange
stratified mats. Alternating micritic and botroidal lamina
are usually irregular with variable thickness (50-500 pm
thick). These are the most common lamina types in these
structures. Micritic:  represented by nanometer-scale
spherical, globular, or spherulitic calcite (up to 300 nm) or
more irregular globular to anhedral calcite. Botryoidal:
individual or stacked micro-laminated botryoids (300 pm
wide and 100 pm tall) or radial fibrous crystal bundles
(50-100 pm wide 400-600 pm tall) associated with
bacteria remains and diatom frustules.

Locally microspar lamina
with

preserved Rivularia-like
filaments

Laminae bearing Rivularia-like filaments: irregular
laminae with tufted dark brown to yellowish vertically
oriented filaments (diameter 15-20 pm) in micro-spar
translucent carbonates. Filaments form a paintbrush-like
(cf. Reitneret al 1996) palisade fabric. Alternates with
micrite or botryoidal laminae.

Whitish irregular granular
laminae

White granular precipitates with the presence of diatom
and forming irregular laminae alternating with

other lamina types. It shows characteristic remarkably
similar to the granular texture and diatom-bacteria
aggregates observed in the stratified pinkish-orange
microbial mats thus being a fossilized equivalent.

Spar to microspar laminae
with
oriented pennate diatoms

Irregular and translucent microspar laminae, occasionally
micritic. Parallel-oriented pennate diatom frustules. This
has also been recorded during diatom blooming events in
the areas where the pinkish-orange microbial mats are
common.

Stromatolites - cm to
dm-scale flat to columnar
stromatolites

Micritic laminae

Within ponds where stromatolites are covered by dark
green to grey colored biofilms. These mini-stromatolites
are columnar at the cm-scale and usually encrusting
previous oncoids. Micritic laminae are irregular (100-300
pm thick) and shows variably preserved organic remains
(degraded coccoid clusters) which are evident by
fluorescence under UV light microscopy.
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stromatolite nucleated over an oncoidal structure showing concentric
growth.

Figure 14.5 Well-laminated planar to mini-columnar

14.7 Stable isotopes of the Laguna Negra microbialites (Carbon and Oxygen)

Previous studies of 8*3C and 50 in the LN carbonates showed strong isotopic
enrichment, particularly of the §'C of the carbonates reaching values up to 18%o (Gomez et
al 2014, Buongiorno et al 2018). This enrichment is similar to what has been observed in
other saline lakes in the Puna-Altiplano region (Valero-Garces et al 1999, 2000). Figure 14.7
shows a cross-plot of the 8**C and &0 showing covariation, as typically observed in closed
lakes where evaporation and CO; degassing are important (Talbot 1990) usually following a
Rayleigh distillation pattern (Valero-Garces et al 2000, Buongiorno et al 2018).

In addition to the covariation pattern, Buongiorno et al (2018) showed that both, §"*C
and 50 values decreased over time, that is when observed from the core to the outer edge of
the oncoids and laminar crusts. These can show a change of up to 8%o in 8*3C and 4%, in 5'°0
toward lower values. This was interpreted as due to progressive freshening, the increase in
the influx of freshwater carrying a lighter isotope signal (for details see Buongiorno et al
2018). An increase in humidity between 2200-1800 years before present has been
documented with different proxies, with an estimated increase of 15-20% (Boschettiet al
2007). This pattern towards lighter isotopes is less clear in the laminar crusts (when
compared with the oncoids), given that in Zone 3A the mixing rate with groundwater is lower
so the evaporation signal is stronger, as suggest heavier values in 520 of laminar crusts when
compared with oncoids (Buongiorno et al 2018).
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Figure 14.7 Cross-plot of the carbon and oxygen stable isotopes of the LNmicrobialites and laminar crusts
compiled from those published by Gomez et al (2014) and Buongiorno et al (2018). The adjusted trend line is
313C=0.76*5%0 +8.9 (R=0.65).

Figure 14.8 Different types of microbial mats found in the Stromatolite Belt area, associated with carbonates,
mostly oncoids. A) Orange Stratified Mat (OSM), the most common microbial mat. Black Pustular Mat (BPM) is also
observed surrounding partially exposed oncoids. B) Certain zones exhibit a blackish microbial community, here called Black
Patch (BP). C) Pink Stratified Mat (PSM) near greenish patches (Green Patch-GP). D) A distinct microbial community
develops a greenish soft bubble floating mat (Green Mat-GM) associated with insipient oncoids. E) Black Pustular Mat
(BPM), a cyanobacterial dominated community that is located close to water-air interface covering carbonate crusts.

14.8 Microbial mats diversity

The LN system allows studying the relationship between microorganisms and calcium
carbonate precipitation. As stated, the environmental conditions, like high UV exposure, high
salinity, temperature fluctuations and strong winds, restrict life mostly to bacteria, archaea
and unicellular eukaryotes. The LN mats consist of complex microbial communities that
develop in the interface between sediment and water in the Stromatolite Belt. The presence of
diatoms and bacteria-diatom-mineral aggregates represents the main component of the LN



microbial mats. Pennate and centric diatoms are observed; although pennates appear to be
more abundant. Some of the diatom groups recognized by morphological microscopy
observation include Achnanthesbrevipes, Halamphorasp., Naviculasp., Surirellasp., and
Striatulasp. (Gomez et al 2018). The distinctive abundance of diatoms reported in other
Andean lakes, suggests their role as the primary producers in these high-altitude microbialitic
systems (Fariaset al 2013, 2014; Rasuket al 2014, 2015).

There is a variety of microbial mats inhabiting the Stromatolite Belt, with
recognizable macroscopic differences in superficial coloration and textural aspects (Figure
14.8). The following descriptions correspond to the most remarkable types of microbial mats
found covering the sediments in the area, and their related bacterial diversity according to
16S rDNA 454 pyrosequencing analysis.

14.8.1 OSM (Orange Stratified Mat)

The oncoids of the Stromatolite Belt are mainly associated with this type of microbial
mat. These mats have an orange surface and a granular texture, and shows a stratified internal
structure controlled by light and redox gradients (Teske and Stahl 2002), as commonly seen
in microbial mats in hypersaline settings. There is a distinguishable orange top layer (1-2 cm
thick), followed by a purple layer (2-5 mm thick), then a thin green layer and a black anoxic
horizon at the very bottom (several cm to dm thick). Among the studied mats from the LN,
this has the highest diversity based on observed species and Shannon index, and the lowest
Dominance and highest Equitability, meaning that the most prominent groups are more
evenly distributed in the community composition than in other mats (Gomez et al 2018). The
most abundant phylum is Proteobacteria (24%) (Figure 14.9), mostly Alphaproteobacteria
and Deltaproteobacteria (Figure 14.10). The most frequent Gammaproteobacteria OTU
(Operational Taxonomic Unit) matches with Halochromatium sp., a purple sulfur bacterium,
and the most common OTU of Deltaproteobacteria matches with Desulfobacula sp., a marine
sulfate-reducing bacterium with the capacity to degrade aromatic compounds. Other
remarkable phyla found are Spirochaetes (14%), Verrucomicrobia (12%), Bacteroidetes
(11%), and candidate phylum OD1 (currently named Parcubacteria, 10%) (Figure 14.9),
whose members were recently described as probably being ectosymbionts or parasites of
other organisms (Nelson and Stegen 2015).

14.8.2 PSM (Pink Stratified Mat)

This mat presents a more pinkish coloration in the surface, a stratified internal structure,
and a less granular texture. Bacteroidetes (22%) is the dominant phylum (Figure 14.9).
Proteobacteria is found second in abundance (19%) and most of it belonged to the
Desulfobacteraceae family in the Deltaproteobacteria class (Figure 14.10). The phylum
Spirochaetes is also present (14%). Deinococcus-Thermus (8%) and Firmicutes (4%) are less
abundant. These results show that heterotrophic saccharolytic bacteria are the main bacterial
families detected and mostly include: Rhodothermaceae (Park et al 2014), Spirochaetaceae
(Karamiet al 2014) and Deinococcaceae (Makarova et al 2007). The Chromatiales order
(anoxygenic photosynthetic bacteria) that use hydrogen sulfide as electron donor and
accumulate elemental sulfur in globules inside their cells (Imhoff 2014) are also detected in
abundance within this mat (for more details see Gomez et al 2018).

14.8.3 GP (Green Patch)



This mat represents an isolated greenish patch in between the PSM with a less stratified
structure. The most abundant phylum present is Deinococcus-Thermus (19%), follow by
Proteobacteria (18%), OD1 (Parcubacteria, 14%), Spirochaetes (11%), and Verrucomicrobia
(9%) (Figure 14.9). Among Proteobacteria, Rhodobacteraceae (3%) and Desulfobacteraceae
(4%) are abundant. The green coloration of this mat could be explained by the abundance of
diatoms, as the highest number of Stramenopiles chloroplast 16S rDNA sequences is
recorded in this mat.

14.8.4 BP (Black Patch)

This is another patchy community, restricted to shallow ponds in between oncoids. The
bacterial diversity record is clearly distinct. The BP had the lowest diversity with a lower
Equitability and higher Dominance index in comparison with other spots and the stratified
sites (Gomez et al 2018) (Figure 14.9). In this mat, half of the sequences belong to Firmicutes
(53%), the dominant phylum. Within Firmicutes, nearly 44% of it belongs to Halanaerobium
sp., Halanaerobiaceae (98% identity Greengenes database) (Figure 14.10). This genus may
indicate the predominance of anaerobic fermentative halophilic communities. Other relatively
abundant groups include Proteobacteria (11%), and Verrucomicrobia (6%).

14.8.5 GM (Green Mat)

This mat is observed closer to the groundwater springs, it is a green mat occasionally
observed floating due to the presence of gas bubbles. The pyrosequencing analysis of the GM
shows that most of the members belong to the Bacteroidetes phylum (30%) (Figure 14.9).
Roughly 17% of them corresponds to the Saprospiraceae family (Figure 14.10), which is
known to have an important role in the breakdown of complex organic compounds (Mcllroy
and Nielsen 2014). Besides, Flavobacteriaceae (11%) (Figure 14.10), mostly
Winogradskyella sp. is detected. Verrucomicrobia is abundant as well with a representation of
26%. Proteobacteria is well represented with 18%, where an 83% of the relative abundance in
this group belongs to Alphaproteobacteria (mostly Rhodobacteraceae). In comparison with all
the others mats, the phylum Deinococcus-Thermus is not observed within the GM.

14.8.6 BPM (Black Pustular Mat)

There are clear macroscopic characteristics that make this mat unique. Cyanobacterial
colonies develop a pustular to pinacular surface built by filaments, and it has a distinct black
coloration that might be due to the scytonemin pigment from the cyanobacteria for protection
against UV radiation. The BPM is commonly found in shallow ponds (a few cm) near the
coast of the lake, close to the water-air interface, or colonizing the rims of partially exposed
oncoids. This mat presents the highest Dominance index, and the lowest Equitability,
meaning that the taxonomic groups present have uneven relative abundances and that only
few of them dominate the community (Gomez et al 2018). The 37% of the bacterial diversity
belongs to Deinococcus-Thermus (all Deinococcaceae family), Verrucomicrobia (17%) with
families like Spartobacteriaceae (10%) and Puniceicoccaceae (4%), and Proteobacteria
(10%), mainly Alphaproteobacteria (4%, with Rhodobacteraceae and Rhodospirillaceae
members) and Gammaproteobacteria (3%) (Figure 14.9). Remarkably, in terms of diversity,
the BPM is the only type of microbial mat in the LN that presents a significant abundance of
the phylum Cyanobacteria (11%), mainly Rivulariaceae (10,5%) (Figure 14.10). Most groups
present in the mat are heterotrophic bacteria, except for Cyanobacteria, and the most



abundant family (Deinococcaceae) includes saccharolytic bacteria (Makarova et al 2007),
probably able to degrade EPS (Extracellular Polymeric Substances) produced by diatoms.
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Figure 14.9 Relative abundance of phylum-level bacterial composition derived from each type of microbial mat
sampled. Note Deinococcus-Thermus, Verrucomicrobia, Proteobacteria, Bacteroidetes, Spirochaetes and Firmicutes among
the most representative phyla in almost all samples studied. Category “Minor Phyla (<0.01)” includes classified phyla
present in less than 1% relative abundance: Acidobacteria, Actinobacteria, Armatinmonadetes, Chlamydiae, Chlorobi,
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Figure 14.10 Relative abundance of most remarkable subphylum level groups in each microbial mat sampled.



In summary, considering all the different mats, the diversity analysis shows that
Proteobacteria, Verrucomicrobia, Bacteroidetes and Deinococcus-Thermus are the most
representative phyla in almost all samples studied. Other phyla like Spirochaetes and the
gram positive Firmicutes are also abundant. All these groups are well known to be abundant
in marine ecosystems and also in extreme environments, such as microbial mats from
hypersaline systems like Shark bay (Wong et al 2015), Abu Dhabi (Abed et al 2008),
Guerrero Negro (Harris et al 2013) among others; with few differences like the absence of
Acidobacteria and Actinobacteria phyla. The LN microbial community seems to be similar at
the phyla level with other Andean ecosystems, known as High Altitude Andean Lakes
(HAALSs). Deinococcus-Thermus is a group of bacteria known for their high UV radiation
tolerance (lvanova et al 2011), and is also recorded in other HAALs like Tebenquiche, La
Brava (Fariaset al 2014, Fernandez et al 2016), Socompa (Fariaset al 2013, Toneattiet al
2017), Diamante (Rascovanet al 2016), Cejar, Llamara, Jachucoposa, and Pujsa (Rasuket al
2016), where the UV radiation is one of the environmental challenges that organisms have to
cope with. Cyanobacteria is one of the major groups in the BPM but is lesser represented or
absent in the rest of the mats sampled in the LN and in other HAALs. However, confocal
microscopy observations detected the presence of cyanobacteria in all analyzed samples from
the LN, although not as a dominant group (Gomez et al 2018). This distinction of the BPM is
also reflected in PCoA analysis, where the BPM does not cluster with any other bacterial
community studied. Something similar occurs with the non-stratified GM; this mat appears
distant in the analysis, remarking differences in the taxonomical composition of the
community (Figure 14.11).
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Figure 14.11 Bacterial communities clustered using PCoA of the weighted (A) and unweighted (B)UniFrac
distance matrices. Each point corresponds to a different microbial mat sampled. The percentages of variation explained by
the plotted principal coordinates are indicated on the axes.

To better characterize the BPM, the predominant filamentous cyanobacterium was
collected, isolated and culture for a 16S-23S ITS phylogenetic and morphological
characterization. The isolated strain presents unambiguous morphological characteristics,
such as wider trichomes and filaments, uniquely branched trichomes, and mucilaginous pads
at the bases of young trichomes. Additionally, based on the molecular phylogenetic analysis,
the strain was found to be a unique and an independent lineage on the evolutionary tree
belonging to the genus Rivularia inside the Rivulariaceae family (Shalyginet al 2018). As a
result, considering the morphological and phylogenetic analyses, the cyanobacterial strain
retrieved from the LN constitutes a new species (see Shalyginet al 2018 for details) under
requirements of the International Code of Nomenclature for Algae, Fungi and Plants, named
Rivularia halophila sp. nov.(Figure 14.12). It worth mentioning that Rivularia halophila is



the first species of the Rivularia genus reported from inland, hypersaline aquatic
environment.

Figure 14.12 Microscopy photographs of Rivularia halophila, the representative cyanobacterium of the BPM. A)
Almost spherical colonies, with radial arrangement of filaments. B) Detail of filaments, where short juvenile stages are
visible.

Different types of carbonate laminae are identified within the oncoids and these seem
to be partly associated with different microbial communities (for details see Gomez et al
2014, 2018). Interestingly, laminae with calcified Rivularia-like cyanobacterial filaments
showing tufted palisade fabrics are observed alternating with micritic and botryoidal laminae
(see details in Table 1). Gomez et al (2018) and Mlewskiet al (2018) showed that carbonate
precipitation is not directly associated with Rivularia itself (sheats are not usually calcified)
but with the microbial consortia living around the Rivularia filaments, where diatoms and
anoxygenic phototrophic bacteria are particularly abundant (for details see Mlewskiet al
2018). This is interesting given the fact that Rivularia-like filaments have been observed in
the fossil stromatolite record, so this may have implications to better understand Rivularia
mineralization and preservation. For this, a more detailed study focused on the
microorganisms belonging to the consortia existing around the Rivularia Halophila filament
was conducted (Mlewskiet al 2018).

Phylogenetic analyses (by Sanger sequencing) on the bulk BPM and whole genome
amplificationon laser microdissected filaments highlighted the presence of Bacteroidetes
affiliated to Marivirga(Pagani et al 2011), Maribacter and Winogradskyella. All these genera
constitute the most abundant epiphytic bacterial community associated with the Rivularia
filaments (Mlewskiet al 2018). Proteobacteria and Verrucomicrobia are also among the most
abundant phyla detected. Interestingly, members of Gammaproteobacteria found here, have
their closest relative uncultivated bacteria (98% identity) retrieved from the Altiplano at Salar
de Ascotan in Chile.

Interestingly, Rivularia halophiladoes not present any carbonate precipitation on their
sheath itself. The microorganisms located on the cyanobacterial sheath may metabolically
modify the local physico-chemical conditions and induce or preclude carbonate
precipitation.The analysis of the microorganisms specifically associated to Rivularia
halophila sheaths revealed that these are affiliated to epiphytic members of Bacteroidetes
phylum, more specifically to the Maribacter genus that includes heterotrophic bacteria
(Nedashkovskayaet al 2004). Thus, their activity possibly induces acidic conditions by
producing CO; around the Rivularia sheaths, precluding carbonate precipitation (Dupraz and
Visscher 2005,Duprazet al 2009) and explaining in part, the absence of carbonation on the
Rivularia halophila sheaths.



As previously stated, carbonate precipitation typically occurs on the EPS matrix
around the Rivularia filaments and not on the sheaths (Mlewskiet al 2018) and this may have
implications to better understand taphonomic aspects of cyanobacteria calcification in the
rock record. EPS-related carbonate precipitation was also observed in all described LN mats,
within the EPS matrix excreted by a diverse diatoms-bacterial consortium (Gomez et al 2018,
Mlewskiet al 2018). Diatoms and other microorganisms such as Myxococcales and
methanogenic archaea are known to produce large amounts of EPS (Baptesteet al 2005,
Scholten et al 2005). These EPS should serve as nucleation sites for carbonate precipitation
following organo-mineralization. In addition to the photosynthetic activity of Rivularia (for
the BPM case) and diatoms that promoted local alkalinization, some other bacteria identified
in the whole microbial community potentially present metabolisms that favors carbonate
precipitation. For example, some bacteria belonging to the Myxococcales order are known to
favor mineral precipitation (Jimenez-Lépez et al 2007) by ammonification, enhancing the
alkalinity of the medium (Gonzalez-Mufioz et al 2010). Besides, some of the aerobic
anoxygenic phototrophic bacteria (AAnPB) affiliated to the marine Roseobacter clade are
known to interact with marine phytoplankton, including diatoms and this association allow
microbes to use metabolic niches that would be inaccessible otherwise (Overmann and van
Gemerden 2000,Schink 2002, Orphan et al 2008). Most of the members of the
Roseobacterclade are ureolysers and some are denitrifiers (Luo and Moran 2014). Both
ureolysis (Zhu and Dittrich 2016) and denitrification metabolisms (Ersanet al 2015) increase
pH in the surrounding medium and favor carbonate precipitation. Hence, phototrophy,
ureolysis and denitrification associated with the activity of AAnPB may be important drivers
of alkalinization and carbonate precipitation in the BPM.

14.10 Concluding remarks

Carbonate precipitation is expected to occur in the LN, given that mixing between
groundwater springs (alkalinity-rich) and the main lake waters (calcium-rich) increase
saturation state triggering carbonate precipitation (Gomez et al 2014). In addition to mixing,
other physico-chemical processes like evaporation and strong CO, degassing also contribute
to increase saturation states, thus promoting carbonate precipitation (Beeler et al in press,see
also Gomez et al 2019, this volume). Despite this, the extensive microbial mat system also
contributes, through its metabolic activity, to carbonate precipitation. This occurs by
changing chemical equilibrium (producing alkalinity) and providing nucleation sites for
mineral precipitation, particularly due to the presence of EPS. This is recorded in the
carbonate micro-textures in the oncoids and stromatolites as well as in the microbial mats
(Table 1). Some of the recognized microbes show metabolisms that potentially contribute to
carbonate precipitation including sulfate reduction, ammonification, oxygenic and
anoxygenic phototrophic bacteria, uroelyzers and denitrifiers (Gomez et al 2018, Mlewskiet
al 2018). This microbial influence has an impact on the texture of the microbial carbonates,
which is evident when comparing laminar crusts (where no microbial matsare visible),
oncoids and stromatolites (where microbial mats and biofilms are present). By using carbon
and oxygen isotope proxies the LN carbonates have also proven to be useful to record local
environmental changes (Gomez et al 2014, Buongiorno et al 2018). These include variable
mixing rates of groundwaters and lake waters, strong CO, degassing and evaporation as well
as regional environmental changes, for example, the progressive increase in moisture and
freshening of lake waters is related to recent climate changes. Unraveling the relative
influences of these different controls in carbonate precipitation, micro-textures and
geochemical signatures is challenging, even in these modern active systems, so care must be
taken when working in the rock record. Thus, a combined multiproxy approach in modern



systems like the LN provides some insights to better understand the biosphere-geosphere
interactions and record in modern and ancient systems.
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