162 research outputs found

    On “The Analysis of Ranked Data Derived from Completely Randomized Factorial Designs”

    Get PDF
    Extensions of the Kruskal-Wallis procedure for a factorial design are reviewed and researched under various degrees and kinds of nonnullity. It was found that the distributions of these test statistics are a Function of effects other than those being tested except under the completely null situation and their use is discouraged.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Novel statistical approaches for non-normal censored immunological data: analysis of cytokine and gene expression data

    Get PDF
    Background: For several immune-mediated diseases, immunological analysis will become more complex in the future with datasets in which cytokine and gene expression data play a major role. These data have certain characteristics that require sophisticated statistical analysis such as strategies for non-normal distribution and censoring. Additionally, complex and multiple immunological relationships need to be adjusted for potential confounding and interaction effects. Objective: We aimed to introduce and apply different methods for statistical analysis of non-normal censored cytokine and gene expression data. Furthermore, we assessed the performance and accuracy of a novel regression approach in order to allow adjusting for covariates and potential confounding. Methods: For non-normally distributed censored data traditional means such as the Kaplan-Meier method or the generalized Wilcoxon test are described. In order to adjust for covariates the novel approach named Tobit regression on ranks was introduced. Its performance and accuracy for analysis of non-normal censored cytokine/gene expression data was evaluated by a simulation study and a statistical experiment applying permutation and bootstrapping. Results: If adjustment for covariates is not necessary traditional statistical methods are adequate for non-normal censored data. Comparable with these and appropriate if additional adjustment is required, Tobit regression on ranks is a valid method. Its power, type-I error rate and accuracy were comparable to the classical Tobit regression. Conclusion: Non-normally distributed censored immunological data require appropriate statistical methods. Tobit regression on ranks meets these requirements and can be used for adjustment for covariates and potential confounding in large and complex immunological datasets

    HIPAD - A Hybrid Interior-Point Alternating Direction algorithm for knowledge-based SVM and feature selection

    Full text link
    We consider classification tasks in the regime of scarce labeled training data in high dimensional feature space, where specific expert knowledge is also available. We propose a new hybrid optimization algorithm that solves the elastic-net support vector machine (SVM) through an alternating direction method of multipliers in the first phase, followed by an interior-point method for the classical SVM in the second phase. Both SVM formulations are adapted to knowledge incorporation. Our proposed algorithm addresses the challenges of automatic feature selection, high optimization accuracy, and algorithmic flexibility for taking advantage of prior knowledge. We demonstrate the effectiveness and efficiency of our algorithm and compare it with existing methods on a collection of synthetic and real-world data.Comment: Proceedings of 8th Learning and Intelligent OptimizatioN (LION8) Conference, 201

    Factors Influencing the Emergence and Spread of HIV Drug Resistance Arising from Rollout of Antiretroviral Pre-Exposure Prophylaxis (PrEP)

    Get PDF
    Background: The potential for emergence and spread of HIV drug resistance from rollout of antiretroviral (ARV) pre-exposure prophylaxis (PrEP) is an important public health concern. We investigated determinants of HIV drug resistance prevalence after PrEP implementation through mathematical modeling. Methodology: A model incorporating heterogeneity in age, gender, sexual activity, HIV infection status, stage of disease, PrEP coverage/discontinuation, and HIV drug susceptibility, was designed to simulate the impact of PrEP on HIV prevention and drug resistance in a sub-Saharan epidemic. Principal Findings: Analyses suggest that the prevalence of HIV drug resistance is influenced most by the extent and duration of inadvertent PrEP use in individuals already infected with HIV. Other key factors affecting drug resistance prevalence include the persistence time of transmitted resistance and the duration of inadvertent PrEP use in individuals who become infected on PrEP. From uncertainty analysis, the median overall prevalence of drug resistance at 10 years was predicted to be 9.2% (interquartile range 6.9%-12.2%). An optimistic scenario of 75% PrEP efficacy, 60% coverage of the susceptible population, and 5% inadvertent PrEP use predicts a rise in HIV drug resistance prevalence to only 2.5% after 10 years. By contrast, in a pessimistic scenario of 25% PrEP efficacy, 15% population coverage, and 25% inadvertent PrEP use, resistance prevalence increased to over 40%. Conclusions: Inadvertent PrEP use in previously-infected individuals is the major determinant of HIV drug resistance prevalence arising from PrEP. Both the rate and duration of inadvertent PrEP use are key factors. PrEP rollout programs should include routine monitoring of HIV infection status to limit the spread of drug resistance. © 2011 Abbas et al

    A Characterization of Scale Invariant Responses in Enzymatic Networks

    Get PDF
    An ubiquitous property of biological sensory systems is adaptation: a step increase in stimulus triggers an initial change in a biochemical or physiological response, followed by a more gradual relaxation toward a basal, pre-stimulus level. Adaptation helps maintain essential variables within acceptable bounds and allows organisms to readjust themselves to an optimum and non-saturating sensitivity range when faced with a prolonged change in their environment. Recently, it was shown theoretically and experimentally that many adapting systems, both at the organism and single-cell level, enjoy a remarkable additional feature: scale invariance, meaning that the initial, transient behavior remains (approximately) the same even when the background signal level is scaled. In this work, we set out to investigate under what conditions a broadly used model of biochemical enzymatic networks will exhibit scale-invariant behavior. An exhaustive computational study led us to discover a new property of surprising simplicity and generality, uniform linearizations with fast output (ULFO), whose validity we show is both necessary and sufficient for scale invariance of enzymatic networks. Based on this study, we go on to develop a mathematical explanation of how ULFO results in scale invariance. Our work provides a surprisingly consistent, simple, and general framework for understanding this phenomenon, and results in concrete experimental predictions

    A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II

    Get PDF
    During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Potential Impact of Antiretroviral Chemoprophylaxis on HIV-1 Transmission in Resource-Limited Settings

    Get PDF
    Background. The potential impact of pre-exposure chemoprophylaxis (PrEP) an heterosexual transmission of HIV-1 infection in resource-limited settings is uncertain. Methodology/Principle Findings. A deterministic mathematical model was used to simulate the effects of antiretroval PreP on an HIV-1 epidemic in sub-Saharan Africa under different scenarios (optimistic neutral and pessimistic) both with and without sexual disinhibition. Sensitivity analyses were used to evaluate the effect of uncertainty in input parameters on model output and included calculation of partial rank correlations and standardized rank regressions. In the scenario without sexual disinhibition after PrEP initiation, key parameters influencing infections prevented were effectiveness of PrEP (partial rank correlation coefficient (PRCC) = 0.94), PrEP discontinuation rate (PRCC=-0.94), level of coverage (PRCC=0.92), and time to achieve target coverage (PRCC=-082). In the scenario with sexual disinhibition, PrEP effectiveness and the extent of sexual disinhibition had the greatest impact on prevention. An optimistic scenario of PrEP with 90% effectiveness and 75% coverage of the general population predicted a 74% decline in cumulative HIV-1 infections after 10 years, and a 28.8% decline with PrEP targeted to the highest risk groups (16% of the population). Even With a 100% increase in at-risk behavior from sexual disinhibition, a beneficial effect (23.4%-62.7% decrease in infections) was seen with 90% effective PrEP across a broad range of coverage (25%-75%). Similar disinhibition led to a rise in infections with lower effectiveness of PrEP (≤50%). Conclusions/Significance. Mathematical modeling supports the potential public health benefit of PrEP. Approximately 2.7 to 3.2 million new HIV-1 infections could be averaged in southern sub-Saharan Africa over 10 years by targeting PrEP (having 90% effectiveness) to those at highest behavioral risk and by preventing sexual disinhibition. This benefit could be lost, however, by sexual disinhibition and by high PrEP discontinuation, especially with lower PrEP effectiveness (≤:50%). © 2007 Abbas et al
    corecore