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Summary 

An efficient random sampling method is introduced to estimate the contributions of several 
sources of uncertainty to prediction variance of (computer) models. Predktion uncertainty is 
caused by uncertainty about the initial state, parameters, unknown (e.g. future) exogenous 
variables, noises, etcetera. Such uncertainties are modelled here as random inputs into a 
detenninistic model, which translates input uncertainty into output uncertainty. The goal is 
·to pinpoint the major causes of output uncertainty. The method presented is particularly 
suitable for cases where uncertainty is present in a large number of inputs (such as future 
weather conditions). The expected reduction of output variance is estimated for the case that 
various (groups of) inputs should become fully determined. The method can be applied if the 
input sources fall into stochastically independent groups. The approach is more flexible than 
conventional methods based on approximations of the model. An agronomic example 
illustrates the method. A deterministic model is used to advise farmers on control of brown 
rust in wheat. Empirical data were used to estimate the distributions of uncertain inputs. 
Analysis shows that effective improvement of the precision of the model's prediction requires 
alternative submodels describing pest population dynamics, rather than better determination 
of initial conditions and parameters. 

1. Introduction 

After the structure of a deterministic model has been decided upon. much has to be done 
before the model can be used for prediction in a given situation. In this process random 
phenomena are encountered. Initial values are measured more or less accurately. Parameters 
have to be estimated, usually in a series of experiments on submodels. During the estimation 
of submodel parameters, for instance by regression, more random effects turn up. Often 
parameters will show 'natural' variation from case to case. The general setting of a parameter 
could be the population-parameter: the mean over a population of application-cases. The 
population-parameter is estimated with some error, and the parameters of partkular cases will 
differ from the population-parameter. During submodel regression, lack of fit may become 
apparent, in the sense that differences between observations and fit are larger than can be 
ascribed to observation-error. If one does not succeed in modifying the regression equation 
so that the lack of fit disappears, and if the lack of fit is non-systematic, one might 
incorporate submodel-errors as random effects in an extended model (the case of systematic 
lack of fit will not be treated in this paper). One might, for instance, account for temporal 
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variability in subprocesses by white noise inputs. In addition, exogenous variables processed 
by the model may not be known when predictions are made. We will account for aU such 
effects by assuming a detenninistic model with random inputs. This enables an a priori 
investigation of prediction precision, based on the assumption that the structure of the model 
is correct. 
Usually~ the widely rifferent nature of the inputs has implications for their mutual 

(in)dependency. The whole state of affairs will hinge on the model and its application, but 
we will try to give some examples. If various sets of parameters are estimated in different 
experiments, estimation errors of parameters from different sets are likely to be stochastically 
independent, whereas parameter estimation errors within a set will often be dependent. Natural 
variation of parameters has little to do with errors in estimating population means. Errors in 
the measurement of the initial state are independent of errors in parameter estimates. Random 
~xogenous variables and noise inputs, in their turn, may often be assumed to be independent 
of errors in parameter estimation and in measurement of initial values. 

The situation is formalized as follows. A scalar model output Y is assumed to depend on 
a number of stochastically independent random input vectors, say X,, X2, ... X

11
: 

r = f(X" x2, ... XII). 

The vectors X; may have different lengths. The function f is deterministic, usually it is 
evaluated by simulation; f may represent a single output or a combination of outputs. Fixed 
inputs are not representerl in the argument list, being of no interest in the present context. 

In this paper, Y's variability will be characterized by its variance. It will be assumed that 
Y has finite mean and variance; this is guaranteed for instance when f is bounded. The use 
of the variance as measure of uncertainty has an economic rationale: if the loss caused by a 
prediction error is proportional to the square of that error, the expected loss is proportional 
to the variance. 

Uncertainty analysis consists of the investigation of the output distribution, given the model 
and the distribution of the input'\. One may investigate the full variance, that is the variance 
of Y induced by all sources X; collectively. Let U denote a group of one or more sources of 
uncertainty X;; then, by assumption, U is independent of the complementary sources. With 
respect to U, two variance components are particularly interesting. Firstly, the top marRina/ 
variance from U, which is defined as the expected reduction of the variance of Y in case U 
should become fuJiy known, whereas the other inputs remain as variable as before. Secondly, 
the bottom nzarRinal variance from U, defined as the expected value of the variance of Y in 
case all inputs except U should become fully known, U remaining as variable as before. Since 
one does not know in advance at what value the sources will become fixed, one can only 
detennine the distribution of the two variances mentioned; we will content ourselves with the 
mean of these distributions. I man and Hora (I YYO) define uncertainty components in a similar 
way. A source will hardly ever become fuiJy known, so the two variance components 
represent limits to what may be achieved: the top marginal variance is a maximal variance 
reduction, the bottom marginal variance is a minimal residual variance. It will appear that the 
top marginal variance from a source can never be greater than ito:; bottom marginal variance. 

Since the sources of uncertainty are closely related to the methods of data acquisition, 
knowledge of the variances mentioned can be used to assess the potential benefits of further 
research. One may pinpoint sources of uncertainty that are worthwhile to determine more 
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accurately, namely those sour<.:es that one can detennine better, and that have a large top 
marginal variance. On the other hand, there may be sources which cannot become fixed; the 
bottom margina1 variance from the collective of such sources is the best one could ever 
expect to reach. 

In section 2 an overview is given of some current types of un<.:ertainty analyses. The 
anatomy of uncertainty from two independent complementary sources is discussed in section 
3. In section 4 we introduce a new sampling method for uncertainty analysis. The method is 
applied to an example from agronomy in section 5. 

2. Taxonomy of uncertainty analyses 

With respect to the mathematical techniques used, one may discern two major types of 
uncertainty analyses: analyses based on an approximation of the model (most often a low
order polynomial of the inputs. sometimes a nonparametric regression function), and analyses 
based directly on the model. Analyses based on an approximation may be attractive because 
of computational efficiency. Apart from that, an approximation may be interesting for its own 
sake. But an approximation-based analysis depends critkally on the quality of the 
approximation. One has to check the approximation in each new case. and will not always 
be satisfied. A good linear approximation, for instance, may simply not exist over the entire 
range of the inputs. Moreover, if the model has high-dimensional inputs, su<.:h as exogenous 
variables or noises, an approximation is not readily available. (See also Iman & Helton, 1988, 
and Morris, 1991.) In contrast, methods based directly on the model are more easily 
applicable over a wide range of circumstances. TI1ey may require more computation, but in 
many cases this extra effort is far from unsunnountable. 

With respect to the questions addressed. one may also distinguish two major types of 
uncertainty analyses: analyses in which only the full uncertainty is investigated, the 
uncertainty when all inputs are variable; and analyses in whkh one aJso investigates the 
decrease of uncertainty if one or more inputs were to become known more accurately. The 
latter subject is sometimes called the analysis of uncertainty contributions. 

The dependency between the groups of inputs distinguished in the analysis of uncertainty 
contributions brings about another division in the realm of uncertainty analyses. 
Unfortunately, something simple like the uncertainty contribution of an input does not exist. 
except for rare occasions. Usually the varian~.:e redu<.:tion due to the fixing of an input depends 
on which inputs have already been fixed. The con<.:ept of uncertainty contribution of an input 
becomes extra complicated when the inputs distinguished are mutually dependent (Janssen, 
1993). Latin hypercube samples, for instance, are often used as data for an uncertainty 
analysis (McKay & Beckman & Conover, 1979). This method was originally designed for 
independent scalar inputs: the samples being constructed by independent association of 
stratified samples of scalar inputs. Occasionally one may solve dependency problems by using 
a bit more technique or by giving up a bit of exactness (lman & Conover. 19X2: Stein, 19X7). 
Technically and conceptually, uncertainty analysis be<.:omes much simpler if one aggregates 
the inputs into independent groups, and restricts the analysis to those groups. By doing so one 
does not sacrifice relevance, since the dependendes are functionally linked with the current 
method of data acquisition. 

The uncertainty analysis proposed will be restricted to independent groups of inputs: the 
smallest possible independent input sets are to the analysis like atoms to a chemist. This 
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restriction enables an analysis based directly on the model, in which one can estimate the top 
marginal variance and the bottom marginal variance from each source X; and from some 
pooled sources. Thus, the analysis proposed calculates, without recourse to an approximation, 
the uncertainty contributions of stochastically independent groups of inputs while allowing 
for dependency within groups. As far as we know, such analyses do not yet exisl 

3. Anatomy of uncertainty from independent sources 

In this section we study the decomposition of the prediction variance caused by two 
stochastically independent vector inputs. Extension to a larger number of independent vector 
inputs is straightforward. Stochastic variables and vectors will be written in upper case letters, 
the values they assume in lower case. lf an input vector, say U, becomes fully known at value 
u, whereas the other input vector, say V, independent of U, remains as uncertain as before, 
the best prediction of Y will be the mean of flu,V) (best in the least squares sense). The 
situation is illustrated in Table l for the case that U and V can assume a finite number of 
equiprobable values. 

Table I 

v, v2 vJ v .. Vs 

u, Y11 Y12 Yl3 y, .. Yts y~, 

ul Yz1 Y22 Y2~ Y24 Y2s Y2. 
uJ YJt Y32 YB Y34 YJs Y3. 
u .. Y•• Y42 Y43 Y44 Y4s Y4. 

Y.t Y.z Y.3 Y.4 Y.5 Y .. 

A dot index indicates that the mean has been taken over the index; .ft...u;. v) is denoted by Y;i· 
The left column and the upper row contain the values assumed by U and V. The best 
predictions are conditional means of the model output Y. The bottom right element Y .. is the 
best prediction when neither U nor V are known. The right column and the bottom row 
contain the best predictions at the given value of U respectively V. The output yii can be 
decomposed into general mean, main effects and interactions, as usual in analysis of variance: 

Y;j = Y .. + <Y;.-Y) + (y,ry..) + [J;rY..-<Y;.-YJ-(y rYJ]. 

In the general case, the function .ft...u, v) can be decomposed as follows. Let / 0 denote the best 
prediction when U and V are unknown: 

[ 0 = Efi:U,V). 

The best predictions when U or V have become fixed at u or v respectively, are given by 
Eflu,V) and E j{U,v) respectively. Let j~(u) and fv(v) denote the corrections to / 0 when U 
respectively V get fixed: 
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fv<v) = E JtU,v) - fo 

and letfuv(u,v) denote what is left. Then flu,v) may be decomposed: 

flu,v) = fo + fu(u) + fv(v) + fuv(u,v), 

which is sometimes called the analysis of variance decomposition off Accordingly [0 is 
called the general mean, fu(u) and f..(v) are called main effects of u and v, while .fu,.(u,v) is 
called the interaction of u and v. The full variance off neatly falls apart: 

Var flU,V) = Var /u(U) + Var fv<V) + Var f,v(U,V). 

If U were to become fixed at u, the best prediction would be/0 + [,lu), leavingJ;.(V) + f.,..(u,V) 
as prediction error, with reduced variance Var /,.(V) + Var !,,,.(u,V), which is a function of u. 
It i~ not known in advance at which value U should become fixed. One might wish to 
calculate the distribution of this reduced variance, but we will be content with the mean of 
the reduced variance over U, that is Var /..(V) + Var f. ... (U, V). Accordingly, the top marRina/ 
variance from U, the expected variance reduction due to the fixing of U while V remains as 
variable as before, is given by Var / .. (U). Similarly, the bottom marRinal variance from V, the 
expected variance left over when only V remains uncertain, equals Var J;.(V) + Var /,,.(U,V). 
The top marginal variance from U is seen to be the variance of the main effect of U, whereas 
the bottom marginal variance from Vis equal to the sum of the variances of the main effect 
of V and the interaction between U and V. 

Let u1 and u2 denote two independent realizations of U, and let v denote some fixed value 
that can be assumed by V. Then ftu1,v) and f(u2,v) are independent realizations of f(U,V) 
given V=v. Thus d = flu 1,v) - flu2,v) has expectation 0, while its variance, i.e. its expected 
square, is twice the variance of flU, V) given V=v. So YuP is an unbiased estimate of this latter 
variance. It follows that if v is a random realization of V, Yuf is an unbiased estimate of what 
we defined as the bottom marginal variance from source U. The top marginal variance from 
U is obtained by subtracting the bottom marginal variance from V from the full variance of 
Y. 

4. A new sampling method 

In order to estimate top marginal variances and bottom marginal variances, we need a sample 
with frequent oc~urrences of blocks with values of j{X1, X2, .. X,.) within which one argument 
is constant while all other arguments vary randomly; and of blocks within which one 
argument varies randomly while all other arguments are constant. The arguments that are 
constant within blocks should vary randomly between blocks. 

In an ordinary Monte Carlo sample a new realization of the model output f is obtained by 
drawing new values for the input'i X1 ... X11 , and calculating the output f after all new 
drawings. Such a sample contains no information about the role of the individual inputs. In 
the method introduced here,/ is calculated after each drawing of a new value of an individual 
source. New input values are sampled in some fixed cyclic order. In this way, one obtains a 
stationary sequence Y; (i= I ,2 ... ) of realizations of Y. After each cycle, n steps, an independent 



Monte Carlo estimation 339 

realization is obtained. Differences between realizations within a cycle hold information about 
the contributions of the various inputs to the full variance. Such a sample will be called a 
windin~ stairs sample. Although the sample is best represented on a cylinder (the 'wall of the 
staircase') it may well be represented in rows and columns, as illustrated in Table 2. A row 
consists of the steps required to make a full tum, so that a column consists of steps connected 
by a vertical line on the wall of the staircase. 

Table 2. A winding stairs sample for a model with three random inputs X1, X2 and XJ. 
Independent realizations of X; are denoted by X;. 1• X;.2, etcetera. The sample consists of eight 
cycles. 

f(x1.1, x2•1, x3,~) 
f(xi.2• x2.2, x3.J 
f(xl.3• x2.3• x3,3) 
f(x, .•• x2,4• xJ,4) 
f(x,,5, x2.5• X3,s) 
Jtx1,,, x2,,, x3,,) 

f(xl.7• X2.1• X3.1> 
ftxt.s• X2,s• X3,s) 

ftxu, X2.2, x3.1) 

f(xl.2• x2.3• xJ.2) 
ftx,,3, x2.•• x3,3) 
ftx 1.4• x2.5• x3,4) 
ftxl.5• x2.6• x3,5) 
ftx ~,6 , xv, x 3,1\} 

Jtx1.1• x2.s• x3.7} 
Jtx1.s• x2,9• xJ.s) 

4.1. Variance estimation 

f(x 1•1, X2.2, x3.J 
f{x1•2, x2.3, x3,3) 

fi..x,,3, x2.4• x3.4) 
fi..x,,4, x2..'1• xJ,:~) 
fi..xu, Xu.• Xv,) 
f(x~,,, x 2•7, x3.7) 

f<.xl.7• x2.s• xJ.s) 
fi..x,,s, x2,9• x3,9) 

We will show that a winding stairs sample enables unbiased estimation of the full variance, 
of the top marginal variance and of the bottom marginal variance, for single inputs as well 
as for groups of adjacent inputs. A more detailed discussion, including consideration of 
sample size requirements, will be given elsewhere. 

The first column, the sequence Yln + 1 (k=<U.2 ... ). consist of mutually independent 
realizations of Y. So the variance of this sequence estimates the full variance. The same 
applies to the other columns, leading to 11 (dependent) estimates which can be pooled. 

The sequence dt. = Yh - Y1n + 1 (k= I ,2,3 ... ) consists of differences between two values of 
the output with independent realizations of X 1, the other inputs having the same random value. 
The expectation of d1 equals 0. The expectation of ~ci; is equal to the bottom mar~inal 
variance from X1; so the latter is estimated without bias by the mean of the sequence lhcfi. 
Successive values of lfuti are dependent. However, d1 and dl+nr are independent if lml > I; the 
dependence has a short range, from which it foJiows that the variance estimator is 
asymptotically normal. The accuracy of the variance estimator can also be estimated from the 
sequence Y2ci;. The range- I dependence has to be taken into account in the calculations, which 
can be done with techniques similar to those used with first order moving-average time-series: 
the correlation matrix has the same form as in such series. 

The top mar~inal variance from X1 can be estimated similarly from the differences 
8l = y111+ 1 - y(1~0 .,. (k=O, l ,2 ... ). Subtracting the mean of ~8~ from the fuJJ variance estimate 
produces an estimate of the top marginal variance from X1• The same procedure can be 
applied to the other inputs, and to groups of adjacent inputs. 
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A significance test on the difference of two variance estimates is possible, since the 
estimates are asymptotically normally distributed, and since the accuracy of a sample 
difference can be estimated just as before, with the only modification that the dependence in 
the sequence used may now have range 2. 

4.2. Efficiency 

The efficiency of our sampling method is of a different type than the efficiency of, say, block 
designs or the latin hypercube method, where adverse effects on the accuracy are suppressed. 
The efficiency of our method lies mainly in the multiple use of model evaluations: one 
evaluation is used six til)les if all kinds of uncertainty contributions are estimated. The price 
paid is a dependency between estimates and within the sequences that provide the estimates. 
But these dependencies pose no serious problems. The extensibility of the sample also 
contributes to the efficient use of the method. One may start with a moderately small sample 
and append more cycles only if necessary in view of the accuracy of the result(j. Moreover, 
one may start with a small number of steps in a cycle, inserting new steps only at places 
where .the effect of current steps ~s found to be large. 

4.3. Related approaches 

Owen ( 1992) shows how to estimate variances of latin hypercube sample means. A 
remarkable spin-off of Owen's exercise is a method to estimate top marginal variances of 
independent one-dimensional inputs. 

Morris (1991) introduces random sampling plans for sensitivity analysis. The plans are made 
for independent one-dimensional inputs. Apart from these differem:es in application, the plans 
show a great similarity with our winding stairs samples: both consist of one-factor-at-a-time 
designs, and the efficiency of both methods lies in the multiple use of function evaluations. 

5. Example 

The winding stairs method is applied to a model used to advise farmers on control of brown 
rust in winter wheat. The model calculates the loss due to brown rust in Dutch guilders per 
hectare. We will very briefly sketch the model; a detailed description is given in Rossing e1 

al. 1993a, l993b and l993c. The incidence of brown rust is observed as the number of leaves 
with rust spots in a sample of 1 fiO leaves. By an empirical relation, the incidence is translated 
into a density (mean number of spot(j per leaf); a random effect is added to account for lack 
of fit in the density function. The density grows exponentially, the relative growth rate 
varying in time as a constant plus a white noise. The growth stops when the crop is harvested, 
that is when the crop reaches the mature stage of development. The stage of development is 
a function of the cumulative temperature, with a random effect to account for lack of fit 
Finally, the loss is calculated as a bounded function of the integral over time of the number 
of brown rust spots. 

The relations used in the model have been investigated experimentally. The parameters were 
estimated by regression: the resulting parameter error distributions are used in the uncertainty 
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analysis. In some submodels, undeniable Jack of fit showed up, which appeared to be non
systematic and could not be ascribed, for instam.:e, to natural parameter variation (which we 
did not observe). The variances were estimated, and the effects were incorporated as random 
inputs. The temperature u11certainty is represented by 3n years of historical temperature data. 

The construction of an approximation of the model was hampered by the numerous 
temperature data and even more by the noise inputs. These problems were aggravated by the 
fact that the analyses had to be performed under a broad range of circumstances, each of 
which required construction and quality inspection of an approximation. For these reasons, 
an analysis without an approximation was attractive. 

In the uncertainty analysis the following six inputs were assumed independent, and were 
randomly sanipled in the following cyclic order: (I) errors in estimating parameters; (2) error 
in estimation of initial state; (3) noise on relative growth rate; (4) non-systematic error in crop 
development function; (5) non-systematic error in the incidence-density relation~ (6) a season 
of daily temperatures. The sampling order was chosen to enable the grouping of inputs into 
methodologically interesting classes. With some effort, the first two input'\ might welJ become 
known more accurately. The subprocess errors and noises, however, will remain in force as 
long the model's structure is not modified; and the temperature is notoriously unpredictable. 

The logarithm of the loss due to brown rust appears to be approximately normally 
distributed, although the right tail is somewhat shortened. In Table 3 we give the results of 
the analysis of a 250-cyde winding stairs sample of the (base 10) logarithm of the loss for 
one specific situation. The results of the analysis are formulated in terms of top marginal 
variances. This is always possible, since the top marginal variance of a source is 
complementary to the bottom marginal variance of the complementary sources. 

Table 3. Estimated top marginal variances of various groups of uncertainty sources. The top 
marginal variances are expressed in percents of the estimated full variance (.544 with a 
relative standard error of R% ). The greatest variance in a column is marked with an asterisk 
if it is significantly greater than the other variances (separate tests, 5%-two-sided). 

1. estimation error in parameters 

2. measurement error in initial value 
II II 

3. noise on relative growth rate 45" 
Ro· 

4. error on crop development function 63" 7 

5. error on density function 22 

6. temperature 20 20 20 

From the first column in Table 3 it may be seen that the full variance might be reduced up 
to some RO% in the imaginary case that all inputs could be fixed except the totally 
unpredictable temperature. Thus a worthwhile variance reduction is not a priori impossible. 
Subsequently the non-temperature sources are inspected more closely: a split is made between 
parameters and initial values on the one hand and subprocess errors and noise on the other 
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hand. From the second column it is seen that one will reach a reduction of some II% at most 
by very accurate experiments to determine parameters and very accurate measurement of the 
initial conditions. For that reason these two sources were not considered separately. A 
reduction of the submodel errors and noise, representing imperfections in the current model 
structure, is much more promising. These three sources are separated in the third column. The 
non-systematic error on the incidence-density relation appears to be of some importance. But 
the noise on the relative growth rate is seen to be the main offender: up to 45% reduction of 
prediction variance might possibly be obtained if this 'noise' could be deterministically 
accounted for. That can only be imagined, however, with a more comprehensive model. 

The sum of the true relative top marginal variances in a column is at most 100%, the deficit 
being caused by interactions, but due to sampling error the sum of the estimates of the 
relative top marginal variances may be greater than I 00%. In Table 3 the column sums are 
close to 100%: the interat:tion between the sources is small. This implies that the logarithm 
of the loss can be well approximated by a sum of the fonn I. g;(X.), in whkh X; denote the 
sources of variation distinguished, while the functions g;() denote arbitrary, presumably non
linear, functions. 

Better prediction precision leads to more adequate control of brown rust, which implies less 
spraying. Rossing et a/. ( 1lJlJ3a) contains an investigation of some et:onomk t:onsequences 
of the current uncertainty. It remains an open question, however. whether a more 
comprehensive model can be constructed whkh would realize the maximal uncertainty 
reductions calculated above. 

6. Discussion 

The winding stairs uncertainty analysis proposed in this paper enables assessment of 
uncertainty contributions from stot:hastically independent sourt:es while allowing for 
dependency within sources. The restriction to independent sources is no sacrifice of practical 
relevan~e since the dependencies are functionally linked with the method of data acquisition. 
The analysis is not based on an approximation of the model. A good approximation enables 
a very efficient uncertainty analysis. Oct:asionaiJy, however, one will not succeed in obtaining 
an .adequate approximation. Large input variation and model non-linearities may frustrate the 
construction of approximations. The presence of uncertainty in a large number of inputs, such 

. as noise signals, may pose additional problems. Except for the case when the approximation 
is overwhelmingly good, one will always have to deal with the question wether the 
approximation is adequate for the analysis. All sut:h problems can be circumvented with 
Monte Carlo techniques, at the price of a larger computational effort. The winding stairs 
strategy is a Monte Carlo sampling technique designed to capitalize on the computations. This 
is achieved by multiple use of model evaluations and by the extensibility of the sample. One 
may start with a moderately small sample and append new cycles if required in view of the 
precision of the uncertainty estimates. Moreover, one may start with a small number of steps 
in a cycle, inserting new steps only at places where the effect of current steps is found to be 
large. 
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