160 research outputs found

    A collaborative comparison of Objective Structured Clinical Examination (OSCE) standard setting methods at Australian medical schools

    Get PDF
    Background: A key issue underpinning the usefulness of the OSCE assessment to medical education is standard-setting, but the majority of standard-setting methods remain challenging for performance assessment because they produce varying passing marks. Several studies have compared standard setting methods; however, most of these studies are limited by their experimental scope, or use data on examinee performance at a single OSCE station or from a single medical school. This collaborative study between ten Australian medical schools investigated the effect of standard-setting methods on OSCE cut scores and failure rates. Methods: This research used 5,256 examinee scores from seven shared OSCE stations to calculate cut scores and failure rates using two different compromise standard-setting methods, namely the Borderline Regression and Cohen's methods. Results: The results of this study indicate that Cohen's method yields similar outcomes to the Borderline Regression method, particularly for large examinee cohort sizes. However, with lower examinee numbers on a station, the Borderline Regression method resulted in higher cut scores and larger difference margins in the failure rates. Conclusion: Cohen's method yields similar outcomes as the Borderline Regression method and its application for benchmarking purposes and in resource-limited settings is justifiable, particularly with large examinee numbers

    Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Get PDF
    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Social media in undergraduate medical education: A systematic review.

    Get PDF
    INTRODUCTION: There are over 3.81 billion worldwide active social media (SoMe) users. SoMe are ubiquitous in medical education, with roles across undergraduate programmes, including professionalism, blended learning, well being and mentoring. Previous systematic reviews took place before recent explosions in SoMe popularity and revealed a paucity of high-quality empirical studies assessing its effectiveness in medical education. This review aimed to synthesise evidence regarding SoMe interventions in undergraduate medical education, to identify features associated with positive and negative outcomes. METHODS: Authors searched 31 key terms through seven databases, in addition to references, citation and hand searching, between 16 June and 16 July 2020. Studies describing SoMe interventions and research on exposure to existing SoMe were included. Title, abstract and full paper screening were undertaken independently by two reviewers. Included papers were assessed for methodological quality using the Medical Education Research Study Quality Instrument (MERSQI) and/or the Standards for Reporting Qualitative Research (SRQR) instrument. Extracted data were synthesised using narrative synthesis. RESULTS: 112 studies from 26 countries met inclusion criteria. Methodological quality of included studies had not significantly improved since 2013. Engagement and satisfaction with SoMe platforms in medical education are described. Students felt SoMe flattened hierarchies and improved communication with educators. SoMe use was associated with improvement in objective knowledge assessment scores and self-reported clinical and professional performance, however evidence for long term knowledge retention was limited. SoMe use was occasionally linked to adverse impacts upon mental and physical health. Professionalism was heavily investigated and considered important, though generally negative correlations between SoMe use and medical professionalism may exist. CONCLUSIONS: Social media is enjoyable for students who may improve short term knowledge retention and can aid communication between learners and educators. However, higher-quality study is required to identify longer-term impact upon knowledge and skills, provide clarification on professionalism standards and protect against harms
    • 

    corecore