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Abstract

Background: Stored biological samples with pathology information and medical records are invaluable resources
for translational medical research. However, RNAs extracted from the archived clinical tissues are often substantially
degraded. RNA degradation distorts the RNA-seq read coverage in a gene-specific manner, and has profound
influences on whole-genome gene expression profiling.

Result: We developed the transcript integrity number (TIN) to measure RNA degradation. When applied to 3
independent RNA-seq datasets, we demonstrated TIN is a reliable and sensitive measure of the RNA degradation at
both transcript and sample level. Through comparing 10 prostate cancer clinical samples with lower RNA integrity
to 10 samples with higher RNA quality, we demonstrated that calibrating gene expression counts with TIN scores
could effectively neutralize RNA degradation effects by reducing false positives and recovering biologically meaningful
pathways. When further evaluating the performance of TIN correction using spike-in transcripts in RNA-seq data
generated from the Sequencing Quality Control consortium, we found TIN adjustment had better control of false
positives and false negatives (sensitivity = 0.89, specificity = 0.91, accuracy = 0.90), as compared to gene expression
analysis results without TIN correction (sensitivity = 0.98, specificity = 0.50, accuracy = 0.86).

Conclusion: TIN is a reliable measurement of RNA integrity and a valuable approach used to neutralize in vitro RNA
degradation effect and improve differential gene expression analysis.
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Background
In vitro RNA degradation occurs in most of the isolated
RNA samples and the degree of degradation depends on
the specimen collection and storage conditions such as
formalin-fixed, paraffin-embedded (FFPE) and fresh
frozen [1–3]. This is especially a major issue for clinical
tissues collected in surgery suites because optimal stor-
age of collected specimens is often not the primary focus
in that setting. There have been multiple studies showing
that in vitro degradation of RNA impairs accurate
measurement of in vivo gene expression [4, 5]. RNA
degradation has not been a major problem up to recently

since it has a minor influence on gene expression measured
with hybridization-based microarray platforms, in which the
expression of each gene is measured by only a few short,
discrete probes. For example, a previous study found that
only 0.67 % (275 out of 41,000) of the probes were signifi-
cantly affected by in vitro RNA degradation [6]. However, in
recent years, more studies including The Cancer Genome
Atlas consortium (TCGA) are switching to use sequencing-
based RNA-seq to profile gene expression. RNA-seq works
under the assumption that every nucleotide of the transcript
has the equal chance to be sequenced and the amount of
reads produced from a transcript is proportional to the
abundance and length of the transcript. However, if RNA
molecules were partially or completely degraded the corre-
sponding read yield would be also distorted accordingly.
Hence, in vitro RNA degradation introduces a major source
of variation when measuring gene expression via RNA-seq.
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In support of this hypothesis, a recent study found that up
to 56 % of the genes were differentially expressed due to in
vitro RNA degradation [5].
RNA Integrity Number (RIN) is the most widely used

approach to assess in vitro RNA degradation [1–3, 7].
However, the RIN metric has several weaknesses that limit
its applications in both pre-sequencing RNA sample
screening and post-sequencing RNA-seq data analysis.
First, the RIN score relies heavily on the amount of 18S
and 28S ribosome RNAs; the four main features used
by the RIN algorithm includes the “total RNA ratio”,
“28S-region height”, “28S area ratio” and the “18S:28S
ratio”. While this metric accurately captures the integrity
of ribosomal RNAs, it fails to measure the mRNA integrity
directly, which is the main input for RNA sequencing.
Second, RNA decay rate is transcript specific and it is
modulated by several endogenous and exogenous factors
as well as other factors including “AU-rich” sequence,
transcript length, GC content, secondary structure, RNA-
protein complex [4, 5]. It was found that RNA decay rate
varies between functional groups [6, 8] and between
transcripts by up to ten-fold [5, 9, 10]. Third, RIN is an
overall assessment of RNA quality and cannot be used
as a co-factor to adjust for differential RNA degradation
between transcripts in downstream gene expression
analysis. Finally, it has been reported that RIN was not
a sensitive measure of RNA quality for substantially
degraded samples (https://www.illumina.com/content/
dam/illumina-marketing/documents/products/technotes/
evaluating-rnaquality-from-ffpe-samples-technical-note-470-
2014-001.pdf). Illumina® proposed DV200 metric (the
percentage of RNA fragments > 200 nucleotides) to assess
RNA quality. However, similar to RIN, DV200 is also an
overall measurement and fails to determine RNA degrad-
ation at transcript level.
The reduction of sequencing cost has opened doors for

large-scale, RNA-seq-based, gene expression profiling
studies (like TCGA) that use clinical specimens with rich
outcomes data. At the same time, the RNA quality of these
clinical samples could vary significantly and poses a great
challenge to gene expression analysis. Here we developed
a novel algorithm–transcript integrity number (TIN)–
to evaluate RNA integrity from RNA-seq data. We ap-
plied our TIN algorithm to RNA-seq data generated
from 12 human glioblastoma (GBM) cell line samples,
20 human peripheral blood mononuclear cell samples
(PBMC), and 120 metastatic castration resistant prostate
cancer (mCRPC) samples. Our results showed that TIN
metric accurately measured the mRNA integrity at tran-
script level, as demonstrated by high concordance with
RNA fragment size that estimated from RNA-seq read
pairs. We also demonstrated that the median TIN score
(medTIN) across all transcripts can be an accurate and reli-
able measurement of RNA integrity at transcriptome (or

“sample”) level. More importantly, the TIN that is computed
for each transcript can be used to adjust gene expression
and improve differential expression analysis by reducing
the false positives ascribed to in vitro RNA degradation.

Results and discussion
Measuring sample level RNA integrity
We used the median TIN score (medTIN) of all the
transcripts to measure the overall RNA integrity of a
sample. We evaluated the concordance between med-
TIN and the widely used RIN metric using three
independent human datasets: GBM cell lines, PBMCs,
and mCRPC. Each of these datasets has samples cover-
ing a broad range of RIN values. GBM samples have
RIN values ranging from 2 to 10 (Additional file 1: Table
S1), PBMC samples have RIN values ranging from 2.8 to
9.4 (Additional file 2: Table S2) and mCPRC samples
have RIN values ranging from 2.2 to 9.2 (Additional file 3:
Table S3). The Pearson correlation coefficients between
medTINs and the corresponding RIN scores for the GBM,
mCRPC and PBMC samples were 0.93 (P = 9.1 × 10−6;
Fig. 1a), 0.77 (P < 2.2 × 10−16; Additional file 4: Figure S1)
and 0.83 (P = 7.3 × 10−6; Fig. 1b), respectively. The high
concordance highlighted that medTIN was a reliable
index of the overall RNA quality of a sample. Compared
to GBM samples. The correlation between RIN and
medTIN in mCRPC samples was lower, which was
probably because the RIN scores were clustered into two
extremes: with 28 (23.3 %) samples had RIN < 3 and
61 (50.8 %) samples had RIN > 8 (Fig. 1b, Additional file 5:
Figure S2, Additional file 3: Table S3).
The 3′ bias observed in RNA-seq data could arise from

RNA degradation by 5′ exonuclease [11, 12], and the
commonly used polyA enrichment approach would lead
to a even stronger 3′ bias particularly in degraded RNA
samples because oligo (dT) selection will only isolate the
most 3′ portion of the transcript [13]. Consistently with
this hypothesis, we found that samples with lower
medTIN score usually had more skewed gene body cover-
age (Fig. 1c-d). The PBMC dataset was excluded from
further analysis because its single-end sequencing design
prevents the estimation of RNA fragment size.
The average RNA fragment size of a sequencing li-

brary, which can be directly estimated from mapped
read pairs, is a surrogate measurement of RNA integrity
because RNA fragments become smaller after in vitro
degradation process. We therefore computed the average
RNA fragment size of all read pairs to measure the in-
tegrity of a RNA sample, and compared it with medTIN
and RIN metrics, respectively. For the 12 GBM samples,
both RIN (r = 0.90, P = 1.0 × 10−4; Fig. 2a) and medTIN
(r = 0.96, P = 1.2 × 10−6; Fig. 2b) were strongly correlated
with the average RNA fragment sizes with medTIN
metric performed slightly better. For mCRPC RNA
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samples, the medTIN (r = 0.55, P = 7.7 × 10−11) also
performed significantly better than RIN (r = 0.40, P =
5.5 × 10−6) (Fig. 2c, d). We further evaluated the
performance of medTIN metric on severely degraded
samples using a subset of 28 mCRPC samples that have
RIN values < 3 (Additional file 3: Table S3). We observed
no positive correlation between RIN and the corresponding

average RNA fragment sizes (r = 0.089, P = 0.65; Add-
itional file 6: Figure S3a). In contrast, we observed a strong
positive correlation between medTINs and the RNA
fragment sizes for these samples (r = 0.62, P = 4.5 × 10−4;
Additional file 6 Figure S3b). These results highlighted
medTIN was more sensitive than RIN to measure the
integrity of RNA samples that were severely degraded.
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Fig. 1 Evaluating median TIN score (medTIN) metric using RIN and gene body read coverage. a Scatterplot showing correlation between the medTIN
and the corresponding RIN score for 12 GBM samples. Black dashed line is the linear regression line fitted to data. b Scatterplot showing correlation
between the medTIN and the corresponding RIN score for 120 mCRPC samples. Black dashed line is the linear regression line fitted to data. c Gene
body coverage profiles for 12 GBM samples. Samples were ranked from top to bottom on the y-axis in the decreasing order of medTIN. Numbers in
parentheses are the corresponding RIN scores. d Gene body coverage profiles for 120 mCRPC samples. Samples were ranked from top to bottom on
the y-axis in the decreasing order of medTIN. r stands for Pearson’s correlation coefficient; ρ stands for Spearman’s correlation coefficient
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Measuring transcript level RNA integrity
Compared to RIN and other global measurements
[14–16], one of the major improvements of TIN is to
measure RNA integrity of individual transcripts/genes.
We evaluated the performance of TIN by correlating it
with the transcript level average RNA fragment size. As
shown in Fig. 3a, TIN score and RNA fragment size had a
strong positive correlation (Pearson’s r = 0.88, P < 2.2 ×
10−16; Spearman’s ρ = 0.71, P < 2.2 × 10−16) suggesting
that TIN was a good metric to measure transcript integ-
rity. Interestingly, we found the average RNA fragment
size became asymptotically stable as TIN score went
beyond certain threshold (i.e. saturation point). For
instance, in Fig. 3a, the saturation point was around
TIN = 70, and the correlation between TIN and RNA frag-
ment size was much higher for transcripts with TIN < 70
(r = 0.94, P < 2.2 × 10−16) than that of transcripts with

TIN > 70 (r = 0.22, P = 0.003). We observed the similar
trend in all GBM samples with different RIN values
(Fig. 3b, Additional file 7: Figure S4). This is because
the RNA degradation is not the sole determinant for
RNA fragment size as most sequencing library preparation
protocols also incorporate a RNA (or cDNA) “fragmenta-
tion step”. Therefore, the sizes of RNA fragments of a
particular transcript are determined by two factors at the
same time: the fragmentation intensity during library
preparation and the RNA degradation. Presumably,
transcripts with larger TIN values had better RNA integ-
rity and therefore “fragmentation step” played a dominant
role in determining the fragment size whereas RNA deg-
radation played a major role in affecting the fragment size
of transcripts with lower TIN values.
As the overall RNA quality decreased, concordance

between TIN and fragment size was also decreased
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Fig. 2 Evaluating median TIN score (medTIN) and RIN metric using sample level average RNA fragment size. The average RNA fragment size of a
sample was estimated from all read pairs that uniquely mapped to the reference genome (see Methods). a Correlation between RIN score and
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(Additional file 8: Figure S5). For example, the Pearson’s
r were 0.88, 0.89, and 0.88 for three samples with RIN
score of 10 whereas the Pearson’s r were 0.66, 0.61 and
0.63 for three samples with RIN score of 6 (Additional
file 7: Figure S4 and Additional file 8: Figure S5). This is
because the non-linear relationship between TIN and
the RNA fragment size (Fig. 3), and the correlation was
mainly determined by those transcripts whose TINs
were smaller than saturation point.

Effects of transcript features on TIN score
We demonstrated that medTIN and TIN were useful
metrics for assessing the RNA integrity at sample and
individual transcript level, respectively. Next, we asked
what characteristics of transcripts could affect the RNA
degradation and thereby affect TIN score. To accom-
plish this, we compared the mRNA size, CDS (Coding
DNA Sequence) size, 5′UTR (5-prime Untranslated
Region) size, 3′UTR size and GC content of the tran-
scripts to their corresponding TIN scores. We found no
or very weak correlation between transcript size and
TIN score in samples with high RNA integrity. However,
we observed a strong negative correlation between the
transcript size and TIN score for samples with lower
RNA quality (Fig. 4a; Additional file 9: Figure S6). For
example, the Pearson’s r was 0.035, 0.059 and 0.063 for
three GBM samples with RIN of 10 whereas the
Pearson’s r was -0.50, -0.51 and -0.56 for three GBM
samples with RIN of 4. The Pearson’s r was -0.72 for a
sample with RIN value of 2. We observed similar trends
for CDS size (Fig. 4b; Additional file 10: Figure S7), 3′
UTR size (Fig. 4c; Additional file 11: Figure S8) and 5′

UTR size (Fig. 4d; Additional file 12: Figure S9). How-
ever, these features had weaker association with TIN
when compared with that of the transcript size. The
observation that larger transcripts had lower TIN scores
in degraded samples suggested these transcripts were
more susceptible to the in vitro degradation process. In
contrast to transcript size that had negative correlation
with TIN score, the GC content had positive albeit weak
correlation with TIN score, suggesting GC-rich tran-
scripts were resistant to RNA degradation (Fig. 4e;
Additional file 13: Figure S10). This could be explained
by the fact that GC base pairings are more stable than
AU base pairings and transcripts with high GC content
tend to have better thermodynamic stability. A similar
observation was also made by another study [17].

Using TIN to adjust for RNA degradation in gene
differential expression analysis
We first investigated if TIN metric was useful to im-
prove gene differential expression analysis and reduce
false positives. We selected 10 mCRPC samples with
lower RIN (RINmean = 2.4, RINsd = 0.08) values and
another 10 samples with higher RIN (RINmean = 7.1,
RINsd = 1.6) values (Additional file 14: Table S4). All of
these samples were biopsied from bone metastases and
processed using the same protocol. As an independent
dataset, we also selected 3 GBM samples with RIN value
of 10 and 3 samples with RIN value of 4. We found that
the normalized gene expression count (FPKM) did not
correlate with the corresponding TIN scores in mCRPC
samples with relatively higher RNA quality (Fig. 5a;
Additional file 15: Figure S11A-J). However, FPKM
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values positively correlated with TIN scores in mCRPC
samples with lower RNA quality (Fig. 5a; Additional file 15:
Figure S11K-T). We could reproduce this result using the
GBM data (Fig. 5b; Additional file 16: Figure S12). It is
notable that the expression fold change between the high
RIN and the low RIN samples was also significantly
correlated with the TIN fold change; the Pearson’s r were
0.45 (P < 2.2 × 10−16) and 0.64 (P < 2.2 × 10−16) for mCRPC
and GBM data, respectively (Additional file 17: Figure S13).
This dependency of gene expression values on TIN

scores in low quality RNA samples, if not corrected, can
increase the false positive (i.e. Type I error) rates during
gene expression analysis. We corrected this bias by
normalizing a gene’s raw read count with its correspond-
ing TIN score using a nonparametric locally weighted
polynomial regression model (see Methods). As ex-
pected, the loess correction procedure had little effect on
good quality sample (Fig. 6a, c) but effectively neutral-
ized the dependency between read count and TIN score
for low quality samples (Fig. 6b, d).
We then explore if we could improve gene expression

analysis using TIN corrected gene expression read
counts. When comparing 10 high RIN mCRPC samples

to 10 low RIN mCRPC samples, we detected 665 differ-
entially expressed genes (DEGs) using the unadjusted
gene read count (Additional file 18: Table S5). However,
we detected much less DEGs (289) when using TIN-
corrected read counts (Additional file 19: Table S6), 172
(60 %) of which were also seen in the unadjusted DEG
list (Additional file 20: Figure S14). We performed
functional annotation analyses for the 665 DEGs using
DAVID [18]. Interestingly, “ribosomal protein” was the
most enriched term (adjusted P = 3.1 × 10−16) (Table 1).
We observed the same set of enriched terms when
using DEGs detected by comparing GBM samples with
RIN = 10 to RIN = 4 (adjusted P = 1.7 × 10−41) (Table 1;
Additional file 21: Table S7). Ribosomal RNAs were
expected to be differentially expressed between high
RIN samples and low RIN samples, because they were
differentially degraded as reflected by the RIN scores.
Therefore, most DEGs related to “ribosomal protein”
were arguably the false positives due to differential
RNA degradation. As a comparison, we also performed
functional annotation analysis for the 289 DEGs de-
tected from TIN-adjusted read count. The “ribosome”
term was completely removed from the enrichment
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results and replaced with several pathways that were
strongly relevant to cancer development and progres-
sion such as “icosanoid metabolic process”[19], “fatty
acid metabolic process” [20, 21], and “prostaglandin
metabolic process”[22] (Table 1). It is noteworthy that
these cancer specific pathways were mainly contributed
from the 172 common DEGs, while the “ribosome”
terms were exclusively contributed from the 493
“unadjusted specific” DEGs. The “TIN-adjusted spe-
cific” 117 DEGs were enriched in other pathways that
are also highly relevant to cancer, such as “Purine
nucleotide binding proteins” [23, 24] and “LIM domain
containing proteins”[25] (Additional file 20: Figure S14).
We have shown that TIN correction could significantly

reduce false positive DEGS. We next evaluated the
performance of TIN correction on false negatives using
ERCC spike-in controls from SEQC data as “ground
truth”. We removed spike-in transcripts that did not have
at least 5 reads in all of the samples. There were 45 tran-
scripts with a set of predetermined fold changes (ranging
from 0.67 to 4) between group A and group B. Additional
14 transcripts had identical molar concentration between
the two groups. We considered the 45 transcripts as “true
positives (TP)” and the 14 transcripts as “true negatives
(TN)”. When TIN correction was not applied prior to
gene differential expression analysis, 44 out of 45 TPs and
7 out of 14 TNs were called DEGs, resulting in a sensitiv-
ity of 0.98 and specificity of 0.5. When TIN correction
was applied before gene differential expression, 40 out 45

TPs and 1 out of 14 TNs called as differentially expressed,
resulting in a sensitivity of 0.89 and specificity of 0.93
(Table 2). In essence, when using the limited number of
spike-in transcripts, TIN correction prior to differential
expression analysis decreased its sensitivity from 0.98 to
0.89 but dramatically increased its specificity from 0.5 to
0.93. When measuring the performance by accuracy, TIN
correction improved the accuracy from 0.86 to 0.90. In
addition, TIN correction moved the estimated fold
changes closer to the predetermined fold changes,
suggesting that the TIN correction could improve gene
quantification (Additional file 22: Figure S15).
The qualities of commercially available reference RNA

samples used in SEQC project were presumably high.
Therefore, the improvement of TIN correction was
unlikely to be explained by the mitigation of RNA
quality differences. However, in addition to RNA degrad-
ation, RNA-seq has many other inherent biases (such as
GC content, PolyA selection, mappability, etc) that could
also produce non-uniform coverage, which could
partially explain the improvement after TIN correction.

Comparing TIN correction to 3′ tag counting method
When dealing with RNA-seq data generated from low
quality RNA, Sigurgeirsson et al. proposed to use 3′ tag
counting (3TC) method to reduce false positives in
differential expression analysis [5]. To mitigate the read
coverage bias effects on gene expression quantification,
3TC only considered 3′ part of the transcripts by
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extending N (0 ≤N ≤ transcript length) nucleotides from
the 3′ end, and all bases and exons beyond N length
were left out. While 3TC could reduce false positives to
some extent, it also reduced statistical power and
increased false negatives since only a small fraction of all
mapped reads were considered. For example, for 10
mCRPC samples with high RIN values, 61.8 ± 7.5 % of
total reads was uniquely mapped to exon regions and
can be used for gene expression analysis. However, if
3TC method only considered the 3′ 1 Kb region of
transcript, only 26.9 ± 4.2 % of total reads were left to
use. And when considered the 3′ 250 nucleotides (see
below), only 6.6 ± 1.7 % of reads were left to use, which
was equivalent to leave out 90 % usable reads (Fig. 7a).
Because of 3′ bias, the fraction of retained reads for
samples with low RIN values was significantly higher
than those of high quality samples, but only 20.1 ± 9.1 %

reads were retained if 3′ 250 nucleotides were used
(Fig. 7b).
For 3TC method, deciding the size of N is not straight-

forward: to retain statistical power, N should be as large
as possible; however, coverage bias cannot be effectively
removed if N is too large. To determine the proper N
size, we generated read coverage profiles for 20 mCRPC
samples with all expressed transcripts aligned to the 3′
end (i.e. transcription end site) (Fig. 7c). Based on Fig. 7c,
we set N to 250 and then performed gene expression
analysis using the same procedure (see Methods). As we
expected, 3TC method detected 117 DEGs (Additional
file 23: Table S8), a much smaller number as compared
to 289 DEGs that detected with TIN correction and 665
DEGs detected without TIN correction. Although there
were 29 common genes detected by both 3TC and TIN
correction methods (Fig. 7d). No prostate or prostate

Fig. 6 Evaluate the effect of TIN correction on gene expression. a Smoothed scatterplot showing TIN scores and raw read counts for a sample
(GSM1722952) with good RNA quality with RIN = 6.7 and medTIN = 71.5 (before correction), (b) Smoothed scatterplot showing TIN scores and raw
read counts for a sample (GSM1722948) with poor RNA quality with RIN = 2.6 and medTIN = 48.9 (before correction). c Smoothed scatterplot
showing TIN scores and corrected read counts (using loess regression) for the sample with good RNA quality (after correction). d. Scatterplot
showing TIN scores and corrected read counts (using loess regression) for the sample with poor RNA quality (after correction). Loess and linear
regression trends were indicated as yellow (solid) and red (dashed) curves, respectively
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cancer relevant pathways were enriched for the 117
DEG list (Table 1).

Comparing TIN to mRIN
When writing this manuscript, we noticed another
method named mRIN was also developed to directly as-
sess mRNA integrity from RNA-seq data [26]. Although
conceptually similar, mRIN used a modified Kolmogorov-
Smirnov (KS) statistic to quantify the 3′ bias of reads
coverage while TIN used the Shannon’s entropy. To
compare the performance of medTIN and mRIN, we ran

mRIN algorithm for the same 12 GBM samples. At sam-
ple level, we found medTIN score was highly correlated
with mRIN score (r = 0.98, P = 1.7 × 10−8) (Fig. 8a), sug-
gesting the two methods agreed remarkably well despite
the underlying computation approaches are different.
When comparing mRIN and medTIN to Agilent’s RIN,
we found the correlation between mRIN and RIN (r =
0.96, P = 5.5 × 10−7) was slightly better than that of
medTIN (r = 0.93, P = 9.1 × 10−6) (Fig. 8b-c). However,
when using average RNA fragment size as a benchmark,
medTIN (r = 0.96, P = 1.2 × 10−6) performed slightly better

Table 1 Functional annotation analysis using DAVID (http://david.abcc.ncifcrf.gov/) for 4 lists of differentially expressed genes (DEGs)

Term P value Benjamini

Enriched pathways for the 665 differentially expressed genes in
mCRPC samples (without TIN correction).

ribosomal protein 7.50E-19 3.10E-16

ribosome 1.10E-17 4.10E-15

structural constituent of ribosome 2.00E-17 1.10E-14

ribosomal subunit 3.70E-16 6.30E-14

cytosolic ribosome 1.00E-14 1.30E-12

translational elongation 9.70E-13 1.80E-09

large ribosomal subunit 5.40E-12 5.10E-10

ribonucleoprotein complex 1.20E-11 9.40E-10

translation 7.70E-10 7.10E-07

cytosolic large ribosomal subunit 7.10E-09 3.80E-07

Enriched pathways for the top 500 differentially expressed genes in
human brain Glioblastoma cell line data (without TIN correction).

ribonucleoprotein 9.00E-44 1.70E-41

structural constituent of ribosome 3.70E-37 1.90E-34

ribosome 1.80E-34 7.40E-32

ribonucleoprotein complex 1.20E-32 2.60E-30

ribosomal subunit 8.80E-30 1.20E-27

translational elongation 2.80E-28 4.40E-25

translation 3.70E-26 2.90E-23

cytosolic ribosome 1.10E-21 9.60E-20

structural molecule activity 2.70E-20 6.80E-18

large ribosomal subunit 4.60E-20 2.80E-18

Enriched pathways for the 289 differentially expressed genes in
mCRPC samples (after TIN correction).

icosanoid metabolic process 3.10E-05 3.60E-02

unsaturated fatty acid metabolic process 4.90E-05 2.90E-02

fatty acid metabolic process 5.60E-05 2.20E-02

prostaglandin metabolic process 9.20E-05 2.70E-02

prostanoid metabolic process 9.20E-05 2.70E-02

Arachidonic acid metabolism 7.80E-04 7.50E-02

PPAR signaling pathway 2.00E-03 9.60E-02

Enriched pathways for the 117 differentially expressed genes in
mCRPC samples (using 3′ tag counting method).

protein homooligomerization 2.20E-03 6.00E-01

protein complex assembly 8.50E-03 8.30E-01

protein complex biogenesis 8.50E-03 8.30E-01

macromolecular complex assembly 1.40E-02 9.10E-01

protein oligomerization 1.80E-02 9.20E-01

macromolecular complex subunit organization 2.10E-02 9.20E-01

cellular macromolecular complex subunit organization 3.40E-01 1.00E + 00
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than mRIN (r = 0.92, P = 2.1 × 10−5) (Fig. 8d-e). mRIN
algorithm also reported GIS (gene integrity score) for each
gene. However, we were unable to compare gene level
TIN score with GIS, because GIS score was calculated
from all samples (in our case, the 12 GBM samples), while
TIN was calculated for each gene in each sample.

Although GIS is a gene-specific measurement, it is
practically less useful than TIN to evaluate gene level in-
tegrity since the same gene was often degraded differently
in different samples.

Discussion
Although TIN and Agilent’s RIN are highly concordant,
there are three major differences between them. First,
RIN is a valuable approach for pre-sequencing sample
screening, while TIN scores can only be calculated after
RNA-seq data is produced. Second, when using RNA
fragment size as a surrogate for RNA integrity to com-
pare RIN and medTIN, we found that Agilent’s RIN only
worked well for samples with relative higher RNA
integrity, as evidenced by spread of the distribution of
blue circles in Fig. 2c. In contrast, medTIN was more
sensitive to samples with low integrity, as demonstrated
by more spread of distribution of red circles in Fig. 2d.
Third, TIN provides RNA quality measurements at

Table 2 Evaluate TIN correction using SEQC RNA-seq data with
spike-in controls

TIN correction Without TIN correction

TP 40 44

FN 5 1

Sensitivity 0.89 0.98

TN 13 7

FP 1 7

Specificity 0.93 0.5

Accuracy 0.90 0.86

A

C

B

D

Fig. 7 Compare TIN correction to 3′ tag counting method (3TC). a-b Percentage of retained reads if 3′ 1 Kb, 0.5 Kb and 0.25 Kb were considered.
c Reads coverage profiles for high RIN (blue) and low RIN mCRPC samples (red). All transcripts were aligned to the 3′ end (i.e transcription end site).
d Venn diagram showing overlapping between DEGs detected by TIN correction and 3TC
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transcript level, which not only enables transcript level
quality control, but also helps improve gene expression
analysis. This is particularly useful given that different
genes usually degraded differently.
Since RNA fragment size can be directly estimated from

paired-end RNA-seq data, one might question the need
for TIN. There are several drawbacks for measuring the
RNA integrity using RNA fragment size alone. First, it can
only be estimated from paired-end RNA-seq data. Second,
RNA fragment size is influenced by other confounding
factors such as the fragmentation and size selection steps
during library preparation.
We chose 10 mCRPC samples with lower RIN/

medTIN scores (low RIN group) and another 10 samples
with higher RIN/medTIN scores (high RIN group) with
the primary purpose of comparing “RNA degradation
effect” on gene expression analysis. Unlike GBM and
PBMC datasets that generated from cell lines, the
mCRPC dataset was generated from real clinical tissues,

and represented the genuine RNA degradation complex-
ity and inter-tumor heterogeneity. However, this was a
less than ideal dataset because: 1) these 20 clinical sam-
ples were not exact biological replicates and the path-
ology characteristics of these samples were slightly
different (Additional file 14: Table S4). For example,
Gleason scores were slightly lower in “low RIN group”
(mean = 6.9, median = 7) than that of “high RIN group”
(mean = 7.3, median = 8), even though the difference was
not statistically significant (P = 0.28, two-sided Wilcoxon
rank sum test). This pathological differences between
low and high RIN group also explained the detection of
prostate cancer related DEGs. 2) Unlike SEQC which
had spike-in transcripts with predetermined known ex-
pression values, there was no “true DEGs” available to
accurately test the performance of TIN correction.
However, we demonstrated through pathways analysis
that TIN correction could remove ribosome genes and
identify DEGs that related to prostate cancer.
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It is known that oligo(dT) is not a ideal choice for iso-
lating mRNA from degraded samples. Other protocols
such as exome capture has been demonstrated with
greatly improved performance [27]. However, using oli-
go(dT) to isolate polyadenylated mRNA is the most
widely used RNA-seq protocol especially at the early
stage when more advanced protocols are not available.
For example, BrainSpan (Atlas of the Developing Human
Brain, http://www.brainspan.org/) used oligo(dT) to de-
plete rRNA during RNA-seq library preparation for
RNA samples collected from post-mortem tissues. Being
designed to correct non-uniform coverage derived from
RNA degradation as well as other biases, our TIN
algorithm would be a useful approach to reanalyze or
meta-analyze these RNA-seq data available from public
repositories. On the other hand, even for samples with
reasonable RNA integrity (eg. RIN = 8), 3′ bias still per-
sist (Fig. 1c). And we have demonstrated using the
SEQC dataset that TIN could improve gene expression
analysis even when the RNA quality is high.

Conclusions
In this study, we developed TIN as a novel metric to
measure RNA integrity, and demonstrated with multiple
datasets that the TIN metric is not only a reliable meas-
urement of RNA integrity in both transcriptome and
transcript level, but also a valuable metric to neutralize
in vitro RNA degradation effect and improve differential
gene expression analysis.

Methods
RNA-seq datasets
This study used a total of four datasets including three
published RNA-seq datasets. All three published datasets
were obtained from the NCBI Sequence Read Archive
(SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/) or Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.-
gov/geo/). Sequencing reads from all samples were inde-
pendently aligned to the human reference genome
(hg19/GRCh37) using Tophat (v2.0.6) software config-
ured with default options.

1. Human U-251 MG brain glioblastoma cell lines
(GBM) [5]. This dataset has 12 pair-end RNA-seq
data files available under SRA accession
SRP023548. Samples in this dataset have a wide
range of RIN values: three samples with RIN
value of 10 (SRR873838, SRR873834 and
SRR873822), two samples with RIN value of
8 (SRR879615 and SRR879800), three samples
with RIN value of 6 (SRR880232, SRR881272
and SRR880070), three samples with RIN value
of 4 (SRR881852, SRR881451, and SRR881672)
and one sample with RIN value of 2 (SRR881985).

Additional file 1: Table S1 presents the details of
this dataset.

2. Human peripheral blood mononuclear cells (PBMC)
[4]. This dataset has 20 single-end RNA-seq data files
available under SRA accession SRP041955. This
dataset was developed to estimate the in vitro
degradation at 12 h, 24 h, 48 h and 84 h. Additional
file 2: Table S2 presents the details of the samples
along with their associated RIN values (varied from
2.8 to 9.4).

3. Sequencing quality control consortium data set
(SEQC) [28]. The Sequencing Quality Control
Consortium analyzed samples containing reference
RNA. This dataset was downloaded from NCBI
Gene Expression Omnibus (GEO) with accession
number GSE49712. This SEQC subset has a total of
10 samples. Group A contains 5 replicates
(SRR950078, SRR950080, SRR950082, SRR950084
and SRR950086) of the Stratagene Universal Human
Reference RNA (UHRR) and Group B has 5
replicates (SRR950079, SRR950081, SRR950083,
SRR950085 and SRR950087) of the Ambion Human
Brain Reference RNA (HBRR). ERCC (External RNA
Controls Consortium) control mix was spiked in
both groups at 2 % by volume. This control mixture
contains 92 synthetic polyadenylated
oligonucleotides of 250-2000 nucleotides in length,
which were meant to resemble human transcripts.

4. Human prostate cancer tissue samples (mCRPC).
This study was approved by the Mayo Clinic
Institutional Review Board and conducted in
accordance with the Declaration of Helsinki. We
obtained a total of 120 samples from 46 castration-
resistant prostate cancer patients. Out of the
collected 120 samples, 62 were blood samples,
18 were metastatic rib lesion biopsies and 40 were
metastatic bone tissue biopsies. Tissues were snap
frozen with liquid nitrogen and RNA was harvested
using Rneasy Plus Mini Kit (Qiagen). RNA libraries
were prepared according to the manufacturer’s
instructions for the TruSeq RNA Sample Prep Kit v2
(Illumina, San Diego, CA). Briefly, poly-A mRNA
was purified from total RNA using oligo dT
magnetic beads. The purified mRNA was fragmented
at 95 °C for 8 min and eluted from the beads.
Double stranded cDNA was made using SuperScript
III reverse transcriptase, random primers (Invitrogen,
Carlsbad, CA) and DNA polymerase I and RNase H.
The cDNA ends were repaired and an “A” base added
to the 3′ ends. TruSeq paired end index DNA
adaptors (Illumina, San Diego CA) with a single “T”
base overhang at the 3′ end were ligated and the
resulting constructs were purified using AMPure SPRI
beads from Agencourt. The adapter-modified DNA
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fragments were enriched by 12 cycles of PCR using
Illumina TruSeq PCR primers. The concentration and
size distribution of the libraries was determined on an
Agilent Bioanalyzer DNA 1000 chip and Qubit
fluorometry (Invitrogen, Carlsbad, CA). Pair-end RNA
sequencing was performed using Illumina HiSeq 2500.
Additional file 3: Table S3 presents the details of this
dataset.

Determine the RNA integrity number (RIN)
All mCRPC RNA samples were analysed by Agilent
Bioanalyzer 2100 before sequencing. Based on the re-
corded electropherograms, RIN values were calculated
according to the algorithm[7] considering four features:
“total RNA ratio” (i.e. the fraction of the area in the region
of 18S and 28S compared to the total area under the
curve), 28S-region height, 28S area ratio and the 18S:28S
ratio. RIN values of GBM, PBMC and SEQC RNA sam-
ples were obtained from the original publications.

Algorithm for computing the transcript integrity number
(TIN)
We assumed that a systematic in vitro degradation of a
transcript would result in areas with shallow read depths.
Hence we designed the TIN metric to capture the
uniformity of coverage for a given transcript. Given a
transcript of n nucleotides long and its read coverage at
each nucleotide is (Ci; i = 1,2,…,n). the relative coverage
(Pi) of each nucleotide is calculated as:

Pi ¼ Coverage at i−th position
Total Coverage

¼ CiX
Ci

with P1 + P2 + P3 +… + Pn = 1. The coverage evenness of
a transcript can be measured by Shannon’s entropy:

H ¼ −
Xn

i¼1
Pi � logPi

If a particular nucleotide position has no read coverage
(i.e. Pi = 0), the entropy H = Pi × log Pi = 0. H is maximized
if the coverage is perfectly uniform (i.e. P1 = P2 = P3 =… =
Pn = 1/n) across the entire length of the transcript. For
computational efficiency, we did not use the entire
transcripts to calculate the H. Instead, we selected k
equally spaced positions across the transcript from 5′ end
(transcription start site) to 3′ end (transcription end site).
k is an adjustable parameter in our TIN program. To dis-
tinguish different transcripts transcribed from the same
gene locus, all the exon-exon joint positions (j) were also
taken into calculation:

Ĥ ¼ −
Xn̂

i¼1
Pi � logPi ¼ −

Xkþj

i¼1
Pi � logPi

Although Shannon’s H is a useful index to measure the
uniformity, its logarithmic scale is difficult to interpret

and compare [29]. We addressed this issue by converting
the H index into real “uniformity” (U) as suggested by Jost
et al. [29]:

U ¼ eĤ ¼ e −
Xkþj

i¼1
Pi � logPi

� �

where U (0 ≤U ≤ (k + j)) is technically and biologically
meaningful since it is equivalent to the number of nucle-
otides with uniform read coverage. Accordingly, the TIN
score is the percentage of transcript that has uniform
read coverage:

TIN ¼ 100� U
k þ jð Þ ¼ 100� e

−
Xkþj

i¼1
Pi�logPi

� �

k þ jð Þ

Calculating library RNA fragment size
RNA fragment size is the natural measure of the in vitro
RNA degradation. Since read pairs were sequenced from
both ends of RNA (actually cDNA) fragments, the size
of each RNA fragment in the sequencing library can be
directly estimated from the distance between read pairs
after mapping them to the reference genome. We used
uniquely mapped high quality (mapq ≥ 30) read pairs to
estimate the RNA fragment size. When a read pair was
mapped to the same exon, the fragment size is defined
as the genomic distance covered by the two reads (i.e.
distance between the “start” of the first read and “end”
of the second read). When a read pair was mapped to
different exons of the same gene, introns lying between
the two reads were subtracted from the genomic dis-
tance covered by the read pair. We considered the lon-
gest RNA isoform when multiple splicing isoforms (exon
skipping, intron retention, alternative donor/acceptor
sites, etc.) exist. We removed transcripts with <30
mapped read-pairs to improve the reliability of library
fragment size estimation. The “sample level” RNA
fragment size was estimated by taking the average of
fragment sizes calculated from all read pairs that
uniquely mapped to the reference genome. Similarly, the
“transcript level” RNA fragment size was estimated from
all read pairs that specifically mapped to a transcript.

Normalizing gene level read counts using TIN metric
For samples with poor RNA quality, both raw read
counts and normalized read counts (FPKMs) were posi-
tively correlated with TIN scores (see Results). This type
of in vitro degradation bias would tamper with gene
expression analysis and produce significant numbers of
false positives. To correct this bias, we recalibrated the
gene level read count using the corresponding TIN score
within each sample. In brief, gene level raw read counts
yi (i = 1,2,3,…,n. n is the total number of genes under
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investigation) were regressed to TIN score ti using a
locally weighted polynomial regression method. For this,
we utilized the logarithmic scale of the gene-level counts
because it is more robust to outliers that can bias the fit.
The R function loess was used for the following
function.

y′i ¼ yi−ŷi þmedian y1; ; y2;…; ; ynð Þ
Where yi

′ denote the normalized read count of gene i
and ŷi denote the fitted value.

Differential expression analysis
We applied the same procedure for mCRPC dataset
(compared 10 samples of lower RIN/TIN values with 10
samples of higher RIN/TIN values), GBM dataset (com-
pared three samples with RIN = 10 to three samples with
RIN = 4) and SEQC dataset (compared group A to group
B). This method utilized edgeR (version 3.6.8) to per-
form differential expression analysis [30]. The software
was configured to use the TMM (trimmed mean of M
values) method for normalizing the library depth differ-
ences between samples [31]. Differential expression p-
values were FDR corrected using the Benjamini-Hochberg
method. Genes with an FDR of ≤ 0.01were considered as
differentially expressed between groups.

Availability of supporting data
Twenty RNA-seq data generated from metastatic prostate
cancer tissues were submitted to Gene Expression Omni-
bus (http://www.ncbi.nlm.nih.gov/geo/) with accession
number: GSE70285 (reviewers’ link: http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?token=knchmaksrfqfnov&acc=
GSE70285). Python Code to calculate TIN score (tin.py) is
freely available from RSeQC package (www.http://rseqc.
sourceforge.net) [32].

Additional files

Additional file 1: Table S1. Twelve RNA-seq datasets generated from
human brain Glioblastoma (GBM) cell line2. Accession number, RNA Integrity
Numbers (RIN), the median Transcript Integrity Numbers (medTIN), total read
pairs, read pairs with mapping quality > 30, and number of genes with at
least 10 reads are listed. (XLS 7 kb)

Additional file 2: Table S2. Twenty RNA-seq datasets generated from
human peripheral blood mononuclear cell (PBMC)1. Accession number,
RNA Integrity Numbers (RIN), and the median Transcript Integrity Numbers
(medTIN), total reads, total reads with mapping quality >30, and number of
gene with at least 10 reads are listed. The PBMC samples were stored at
room temperature for 0 h, 12 h, 24 h, 48 h and 84 h. Each time point
contains 4 individuals (replicates). (XLS 9 kb)

Additional file 3: Table S3. 120 RNA-seq datasets generated from clinical
tissues of human metastatic castration resistant prostate cancers (mCRPC).
Sample ID, RNA Integrity Numbers (RIN), the median Transcript Integrity
Numbers (medTIN), total read pairs, read pairs with mapping quality > 30,
and number of genes with at least 10 reads are listed. “B” = Blood, “T” =
Metastatic soft tumor tissue, “N” =Metastatic bone site, “V1” = Visit 1, “V2” =
Visit 2. (XLS 22 kb)

Additional file 4: Figure S1. Concordance between RIN and median
TIN score for 20 peripheral blood mononuclear cell (PBMC) samples [4].
The PBMC samples were stored at room temperature for 0 h (blue), 12 h
(green), 24 h (orange), 48 h (purple) and 84 h (red). Each time point contains
4 individuals (replicates). r, Pearson correlation coefficient. (PDF 143 kb)

Additional file 5: Figure S2. RIN (RNA integrity number) score distribution
for 120 metastatic castration resistant prostate cancer (mCRPC) samples.
(PDF 9 kb)

Additional file 6: Figure S3. Evaluating RIN and median TIN score using
sample level RNA fragment size as benchmark. Only 28 mCRPC samples
with RIN < 3 were used. (a) Scatterplot showing relationship between RIN
and average RNA fragment size. (b) Scatterplot showing relationship
between median TIN score and RNA fragment size. Linear regression lines
fitted to data are indicated as black dashed lines. (PDF 186 kb)

Additional file 7: Figure S4. Evaluating TIN (x-axis) metric using
transcript level RNA fragment size (y-axis) for 12 Glioblastoma (GBM)
samples [5]. (a)-(c) Three samples with RIN value of 10 (red); (d)-(e), two
samples with RIN value of 8 (purple); (f)-(h) three samples with RIN value
of 6 (orange); (i)-(k) three samples with RIN value of 4 (blue); (l) one sample
with RIN value of 2 (cyan). Each dot represents 50 transcripts. Black curves
indicate locally weighted polynomial regression curves. r, Pearson
correlation coefficient. (PDF 1490 kb)

Additional file 8: Figure S5. Barplot showing Pearson correlation
coefficients between TIN and RNA fragment size. 12 Glioblastoma (GBM)
samples were stratified by RIN score; RIN = 10 (red), RIN = 8 (purple), RIN = 6
(orange), RIN = 4 (blue) and RIN = 2 (cyan). (PDF 120 kb)

Additional file 9: Figure S6. Smoothed scatter plots showing correlation
between TIN score and transcript size. (a)-(c) three samples with RIN value
of 10; (d)-(e), two samples with RIN value of 8; (f)-(h) three samples with RIN
value of 6; (i)-(k) three samples with RIN value of 4; (l) one sample with RIN
value of 2. Blue, orange and red represents low, median and high density
of data points, respectively. Transcripts with no read coverage or smaller
then 100 nucleotide were removed. r, Pearson correlation coefficient.
Linear regression lines fitted to data are indicated as black dashed lines.
(PDF 6875 kb)

Additional file 10: Figure S7. Relationship between CDS (coding DNA
sequence) size and TIN score for 12 Glioblastoma (GBM) samples. (a)-(c)
three samples with RIN value of 10; (d)-(e), two samples with RIN value of 8;
(f)-(h) three samples with RIN value of 6; (i)-(k) three samples with RIN value
of 4; (l) one sample with RIN value of 2. r, Pearson correlation coefficient.
Linear regression lines fitted to data are indicated as black dashed lines.
(PDF 7104 kb)

Additional file 11: Figure S8. Relationship between 3′UTR (untranslated
regoin) size and TIN score for 12 Glioblastoma (GBM) samples. (a)-(c) three
samples with RIN value of 10; (d)-(e), two samples with RIN value of 8; (f)-(h)
three samples with RIN value of 6; (i)-(k) three samples with RIN value of 4;
(l) one sample with RIN value of 2. r, Pearson correlation coefficient. r,
Pearson correlation coefficient. Linear regression lines fitted to data are
indicated as black dashed lines. (PDF 7201 kb)

Additional file 12: Figure S9. Relationship between 5′UTR (untranslated
regoin) size and TIN score for 12 Glioblastoma (GBM) samples. (a)-(c) three
samples with RIN value of 10; (d)-(e), two samples with RIN value of 8; (f)-(h)
three samples with RIN value of 6; (i)-(k) three samples with RIN value of 4;
(l) one sample with RIN value of 2. r, Pearson correlation coefficient. r,
Pearson correlation coefficient. Linear regression lines fitted to data are
indicated as black dashed lines. (PDF 7140 kb)

Additional file 13: Figure S10. Relationship between GC content
(GC-ratio) and TIN score for 12 Glioblastome cell line samples. (a)-(c) three
samples with RIN value of 10; (d)-(e), two samples with RIN value of 8; (f)-(h)
three samples with RIN value of 6; (i)-(k) three samples with RIN value of 4;
(l) one sample with RIN value of 2. r, Pearson correlation coefficient. r,
Pearson correlation coefficient. Linear regression lines fitted to data are
indicated as black dashed lines. (PDF 6617 kb)

Additional file 14: Table S4. List of 10 low RIN/medTIN mCRPC and 10
higher RIN/medTIN mCRPC samples used for differential expression analysis.
“N” =Metastatic bone site, “V1” = Visit 1. Whole datasets are available with
accession # GSM1722952. (XLS 97 kb)
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Additional file 15: Figure S11. Dependency between FPKM (y-axis) and
TIN scores (x-axis) for 20 mCRPC samples. (a)-(j) 10 high RIN/medTIN mCRPC
samples. (k)-(t) 10 low RIN/medTIN mCRPC samples. FPKM, Fragment Per
Kilobase exon per Million mapped reads. r, Pearson correlation coefficient.
(PDF 12400 kb)

Additional file 16: Figure S12. Dependency between FPKM (y-axis) and
TIN scores (x-axis) for all 6 Glioblastoma (GBM) samples. (a)-(c) 3 GBM
samples with RIN value of 10. (d)-(f) 3 GBM samples with RIN value of 4.
FPKM, Fragment Per Kilobase exon per Million mapped reads. r, Pearson
correlation coefficient. Linear regression lines fitted to data are indicated as
red dashed lines. (PDF 3998 kb)

Additional file 17: Figure S13. Relationship between expression fold
change measured by log2 (FPKM) and TIN fold change. (a) mCRPC
dataset. (b) GBM dataset. Linear regression lines fitted to data are
indicated as red dashed lines. r, Pearson correlation coefficient.
(PDF 1315 kb)

Additional file 18: Table S5. edgeR detected 665 differentially expressed
genes (FDR cutoff = 0.01) in mCRPC samples (without TIN correction).
FC = Fold Change; CPM = Count Per Million; FDR = False Discovery Rate.
(XLS 97 kb)

Additional file 19: Table S6. edgeR detected 289 differentially expressed
genes (FDR cutoff = 0.01) in mCRPC samples (after TIN correction). FC = Fold
Change; CPM = Count Per Million; FDR = False Discovery Rate. (XLS 45 kb)

Additional file 20: Figure S14. Venn diagram showing the overlapping
between 665 DEGs (before TIN correction) and 289 DEGs (after TIN
correction). DEG, differentially expressed gene. (PDF 101 kb)

Additional file 21: Table S7. edgeR detected top 1000 differentially
expressed genes (FDR cutoff = 0.01) in GBM samples without TIN correction.
FC = Fold Change; CPM = Count Per Million; FDR = False Discovery Rate.
(XLS 143 kb)

Additional file 22: Figure S15. Comparing fold change estimated from
RNA-seq data to predetermined fold change (red dashed line). A total of
15 genes with predetermined fold change of 4 were considered. (PDF 95 kb)

Additional file 23: Table S8. edgeR detected top 117 differentially
expressed genes (FDR cutoff = 0.01) in GBM samples using 3′ count method
(3TC). FC = Fold Change; CPM = Count Per Million; FDR = False Discovery
Rate. (XLS 22 kb)
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