8,692 research outputs found

    Data and performance of an active-set truncated Newton method with non-monotone line search for bound-constrained optimization

    Get PDF
    In this data article, we report data and experiments related to the research article entitled “A Two-Stage Active-Set Algorithm for Bound-Constrained Optimization”, by Cristofari et al. (2017). The method proposed in Cristofari et al. (2017), tackles optimization problems with bound constraints by properly combining an active-set estimate with a truncated Newton strategy. Here, we report the detailed numerical experience performed over a commonly used test set, namely CUTEst (Gould et al., 2015). First, the algorithm ASA-BCP proposed in Cristofari et al. (2017) is compared with the related method NMBC (De Santis et al., 2012). Then, a comparison with the renowned methods ALGENCAN (Birgin and Martínez et al., 2002) and LANCELOT B (Gould et al., 2003) is reported

    Hybridization of multi-objective deterministic particle swarm with derivative-free local searches

    Get PDF
    The paper presents a multi-objective derivative-free and deterministic global/local hybrid algorithm for the efficient and effective solution of simulation-based design optimization (SBDO) problems. The objective is to show how the hybridization of two multi-objective derivative-free global and local algorithms achieves better performance than the separate use of the two algorithms in solving specific SBDO problems for hull-form design. The proposed method belongs to the class of memetic algorithms, where the global exploration capability of multi-objective deterministic particle swarm optimization is enriched by exploiting the local search accuracy of a derivative-free multi-objective line-search method. To the authors best knowledge, studies are still limited on memetic, multi-objective, deterministic, derivative-free, and evolutionary algorithms for an effective and efficient solution of SBDO for hull-form design. The proposed formulation manages global and local searches based on the hypervolume metric. The hybridization scheme uses two parameters to control the local search activation and the number of function calls used by the local algorithm. The most promising values of these parameters were identified using forty analytical tests representative of the SBDO problem of interest. The resulting hybrid algorithm was finally applied to two SBDO problems for hull-form design. For both analytical tests and SBDO problems, the hybrid method achieves better performance than its global and local counterparts

    TESS. La banca dati on-line dei rivestimenti a mosaico

    Get PDF
    A project undertaken by the University of Padua has developed the new database system TESS for mosaics. This database system meets the national standards required by the Istituto Centrale per il Catalogo e la Documentazione – ICCD. The database is available on-line thanks to the project «Cultural heritage in the Adriatic area: knowledge, preservation and enhancement», co-financed by the Community Initiative INTERREG III A – Adriatic Cross Border Programme. In detail, the database TESS includes informative files regarding Building and Rooms, Location, relevant Bibliography and Mosaic Pavement. Each file contains plans, designs and photographs. Furthermore, all the fields have a list of univocal and exhaustive terms in the Italian language. The mosaics database aims to provide a key working tool for the identification of the origins of iconographic themes, their geographic distribution and the development of local fashions which vary according to the context. The software was developed on a FileMaker client/server environment to achieve these key goals: multiplatform availability (Windows/Macintosh), multiuser capability and remote connectivity. Making wide use of the latest tools included in FileMaker 8, the development group created a smart and complete GUI to access the complex data structure, and at the same time implemented a stringent control of user privileges by setting data-related group policies. The result is a powerful middleware application that allows data entry, analysis and publication to geographically distributed operators and will provide data consultation to other users through normal web browsers

    Four-Dimensional Yang-Mills Theory as a Deformation of Topological BF Theory

    Get PDF
    The classical action for pure Yang--Mills gauge theory can be formulated as a deformation of the topological BFBF theory where, beside the two-form field BB, one has to add one extra-field η\eta given by a one-form which transforms as the difference of two connections. The ensuing action functional gives a theory that is both classically and quantistically equivalent to the original Yang--Mills theory. In order to prove such an equivalence, it is shown that the dependency on the field η\eta can be gauged away completely. This gives rise to a field theory that, for this reason, can be considered as semi-topological or topological in some but not all the fields of the theory. The symmetry group involved in this theory is an affine extension of the tangent gauge group acting on the tangent bundle of the space of connections. A mathematical analysis of this group action and of the relevant BRST complex is discussed in details.Comment: 74 pages, LaTeX, minor corrections; to be published in Commun. Math. Phy

    Spectral properties of the two-dimensional Schrödinger Hamiltonian with various solvable confinements in the presence of a central point perturbation

    Get PDF
    We study three solvable two-dimensional systems perturbed by a point interaction centered at the origin. The unperturbed systems are the isotropic harmonic oscillator, a square pyramidal potential and a combination thereof. We study the spectrum of the perturbed systems. We show that, while most eigenvalues are not affected by the point perturbation, a few of them are strongly perturbed. We show that for some values of one parameter, these perturbed eigenvalues may take lower values than the immediately lower eigenvalue, so that level crossings occur. These level crossings are studied in some detail

    A multi-objective DIRECT algorithm for ship hull optimization

    Get PDF
    The paper is concerned with black-box nonlinear constrained multi-objective optimization problems. Our interest is the definition of a multi-objective deterministic partition-based algorithm. The main target of the proposed algorithm is the solution of a real ship hull optimization problem. To this purpose and in pursuit of an efficient method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type algorithm with an efficient derivative-free local algorithm. The results obtained on a set of “hard” nonlinear constrained multi-objective test problems show viability of the proposed approach. Results on a hull-form optimization of a high-speed catamaran (sailing in head waves in the North Pacific Ocean) are also presented. In order to consider a real ocean environment, stochastic sea state and speed are taken into account. The problem is formulated as a multi-objective optimization aimed at (i) the reduction of the expected value of the mean total resistance in irregular head waves, at variable speed and (ii) the increase of the ship operability, with respect to a set of motion-related constraints. We show that the hybrid method performs well also on this industrial problem

    Numerical study of the FRP-concrete bond behavior under thermal variations

    Get PDF
    In a context where daily and seasonal temperature changes or potential fire exposure can affect the mechanical response of structures strengthened with fiber-reinforced polymer (FRP) composites during their life cycle, the present work studies the bond behavior of FRP laminates glued to concrete substrates under a thermal variation. The problem is tackled computationally by means of a contact algorithm capable of handling both the normal and tangential cohesive responses, accounting for the effect of thermal variations on the interfacial strength and softening parameters, which defines the failure surface and post cracking response of the selected specimen. A parametric investigation is performed systematically to check for the effect of thermo-mechanical adhesive and geometrical properties on the debonding load of the FRP-to-concrete structural system. The computa- tional results are successfully validated against some theoretical predictions from literature, which could serve as potential benchmarks for developing further thermomechanical adhesive models, even in a coupled sense, for other reinforcement-to-substrate systems, useful for design purposes in many engineering applications

    An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations

    Get PDF
    This work addresses optimal control problems governed by a linear time-dependent partial differential equation (PDE) as well as integer constraints on the control. Moreover, partial observations are assumed in the objective function. The resulting problem poses several numerical challenges due to the mixture of combinatorial aspects, induced by integer variables, and large scale linear algebra issues, arising from the PDE discretization. Since classical solution approaches such as the branch-and-bound framework are typically overwhelmed by such large-scale problems, this work extends an improved penalty algorithm proposed by the authors, to the time-dependent setting. The main contribution is a novel combination of an interior point method, preconditioning, and model order reduction yielding a tailored local optimization solver at the heart of the overall solution procedure. A thorough numerical investigation is carried out both for the heat equation as well as a convection-diffusion problem demonstrating the versatility of the approach
    • …
    corecore