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Abstract. The paper is concerned with black-box nonlinear constrained multi-objective
optimization problems. Our interest is the definition of a multi-objective deterministic
partition-based algorithm. The main target of the proposed algorithm is the solution
of a real ship hull optimization problem. To this purpose and in pursuit of an efficient
method, we develop an hybrid algorithm by coupling a multi-objective DIRECT-type
algorithm with an efficient derivative-free local algorithm. The results obtained on
a set of “hard” nonlinear constrained multi-objective test problems show viability of
the proposed approach. Results on a hull-form optimization of a high-speed catama-
ran (sailing in head waves in the North Pacific Ocean) are also presented. In order
to consider a real ocean environment, stochastic sea state and speed are taken into
account. The problem is formulated as a multi-objective optimization aimed at (i) the
reduction of the expected value of the mean total resistance in irregular head waves,
at variable speed and (ii) the increase of the ship operability, with respect to a set of
motion-related constraints. We show that the hybrid method performs well also on
this industrial problem.
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1 Introduction

In this paper we are interested in the multi-objective nonlinear programming problem:

min (f1(x), . . . , fq(x))
⊤

s.t. gj(x) ≤ 0, j = 1, . . . ,m
ℓi ≤ xi ≤ ui, i = 1, . . . , n

(1)

where q > 1, fi : R
n → R, i = 1, . . . , q, gj : Rn → R, j = 1, . . . ,m, ℓi, ui ∈ R are both

finite and such that ℓi < ui, i = 1, . . . , n. We assume that fi, i = 1, . . . , q, gj , j = 1, . . . ,m
are (Lipschitz) continuous functions and that no global information (convexity, Lipschitz
constants, . . . ) on the problem is available. Furthermore, we assume all the problem
functions to be of the black-box type, meaning that only function values are available
and can be used to solve the problem. This is a common feature in many situations in
which computation of the problem functions is the result of time-consuming and complex
simulation programs. On top of this, function values are typically affected by noise.
Hence, making use of finite differences to obtain function gradients is unpractical, if not
untrustworthy.

Multi-objective constrained problems and, more particularly, black-box ones like Problem
(1), are almost ubiquitous in real-world applications and very well-studied in the literature
[5, 13, 23, 28]. Indeed, the situation in which two (or even more) conflicting performances
are to be optimized is becoming more and more frequent in practice. In such situations, the
classical optimality definition for single-objective problems must be replaced by the well-
known Pareto optimality definition. The most important consequence of such a different
optimality definition is that, in the multi-objective context, we have to expect a set of
equivalent (or “non-dominated”) solutions rather than a single point or a set of points with
the same objective function value. Non-dominated solutions are (sort of) indistinguishable
one another. This is because they represent trade-off solutions of the problem so that, if
we seek for improvement of one objective function, we have to be prepared to accept a
deterioration of one of the other objectives.

As concerns solution algorithms, the Pareto optimality definition brings along a peculiar
distinction in the multi-objective context, namely the actual separation of roles between
the “problem solver” and the “decision maker”. The problem solver is the one in charge
of finding one or more non-dominated solutions. The decision maker is the one that, given
a set of “equivalent” non-dominated solution, picks one solution on the basis of her/his
indisputable preferences. Such a distinction is at the basis of a classification of solution
algorithms. Indeed, they can be roughly classified with respect to when preferences of the
decision maker are considered, as follows.

- Methods without preferences: those methods in which preferences of the decision
maker are completely disregarded and the problem is considered solved by finding a
single non-dominated solution.

- Methods with a priori knowledge of preferences: those methods that are based on a
complete knowledge of the decision maker preferences. Hence, the solution process
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is guided by these preferences so that the obtained solution is guaranteed to be
acceptable for the decision maker.

- Methods with a posteriori knowledge of preferences: those methods in which pref-
erences of the decision maker are taken into account at the end of the solution
process. This means that a reasonably rich set of non-dominated solutions must be
computed in order to give the decision maker sufficient freedom to select her/his
preferred solution among the computed ones.

Although there is a relative interest in methods that are able to compute a single non-
dominated solution, i.e. a priori and without preferences algorithms, methods that are
able to reconstruct or to approximate the whole set of Pareto solutions, i.e. a posteriori
methods, are of great importance.
In this respect, evolutionary algorithms [28] have long been used in that, by evolving a
set of individuals, they naturally allow for the computation of a solution set rather than
a single solution.

However, in recent years, some deterministic derivative-free algorithms for multi-objective
problems [6, 22] have been proposed that belong to the class of a posteriori methods.
Unfortunately, such algorithms more than frequently get trapped in local Pareto solutions,
which can be quite disappointing especially for applications.
On the other hand, in the context of single-objective global optimization, partition-based
algorithms [8, 12, 14, 18, 20] are among the most robust ones in the literature, especially for
problems with only a limited number of decision variables, such as the industrial problem
analyzed in the paper (which has four variables).

Therefore, our aim in the paper is to define a multi-objective DIRECT algorithm (MODIR).
Further, since our main interest is in the solution of problems where the functions are
time-consuming to compute, we test the proposed algorithm on a set of “hard” constrained
nonlinear multi-objective problems by allowing no more than 20,000 function evaluations.
With such a limit, MODIR is not able to perform satisfactorily when compared with a
multi-objective genetic algorithm. For this reason, we also propose an hybrid algorithm
which use MODIR to perform an initial exploration of the feasible domain and the local
optimization algorithm DFMO [22] to refine the set of non-dominated solutions computed
by MODIR.
The results obtained on the set of “hard” test problems and on the ship hull optimization
problem, confirm the effectiveness of the proposed hybrid method.

To conclude this section, we introduce some notation used throughout the paper. We
denote by D the hyperinterval

D = {x ∈ Rn : ℓi ≤ xi ≤ ui, i = 1, . . . , n} (2)

and by F the feasible set of Problem (1), namely

F = {x ∈ D : gj(x) ≤ 0, j = 1, . . . ,m}.

and we assume that F 6= ∅, that is Problem (1) is feasible.
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As already argued above, when dealing with several objective functions at a time, the
concept of Pareto dominance is usually considered in the comparison of two points.

Definition 1 (Pareto dominance) Given two points, x, y ∈ F , we say that x dominates
y (x ≺ y) if fi(x) ≤ fi(y), for all i = 1, . . . , q, and an index ı̄ ∈ {1, . . . , q} exists such that
fı̄(x) < fı̄(y).

Anyway, when coming to optimality, it may not be possible to find a point which is
optimal for all the objectives simultaneously. This is the reason why the concept of Pareto
dominance is also used to characterize global and local optimality into a multi-objective
framework. More specifically, by means of the following two definitions, we are able
to identify a set of non-dominated points (the so called Pareto front or frontier) which
represents the set of (global or local) optimal solutions of a given multi-objective problem.

Definition 2 (Global Pareto optimality) A point x⋆ ∈ F is a global Pareto optimizer
of Problem (1) if there does not exist a point y ∈ F such that y ≺ x⋆.

Definition 3 (Local Pareto optimality) A point x⋆ ∈ F is a local Pareto optimizer
of Problem (1) if there does not exist a point y ∈ F ∩ B(x⋆, ρ) such that y ≺ x⋆, for some
ρ > 0.

The paper is organized as follows. In section 2, the classical DIRECT algorithm for single-
objective optimization is recalled. In section 3, the multi-objective DIRECT algorithm
(MODIR) is introduced along with its main convergence property. Section 4 is devoted to the
numerical experimentation of the newly proposed MODIR algorithm and to the comparison
with the local derivative-free algorithm DFMO from [22]. In a subsection we also introduce
an hybrid algorithm that combines MODIR and DFMO. Finally, results on a difficult ship hull
optimization problem are reported. In section 5, we draw some conclusions and discuss
possible lines of future investigations.

2 The original DIRECT algorithm

In this section we report a brief description of the original DIRECT algorithm for single-
objective optimization. To this aim, let us consider for the moment the following (single-
objective) optimization problem.

min f(x)
s.t. 0 ≤ x ≤ 1,

(3)

where f : Rn → R and 0,1 ∈ Rn denote, respectively, the vectors of all zero and one in
n dimensions. Let D denote the feasible set of Problem (3), that is, D = {x ∈ Rn : 0 ≤
x ≤ 1}. It is worth noting that every problem

min f(x)
s.t. ℓ ≤ x ≤ u,
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Set D0 = D, H0 = {D0}, I0 = {0}, c = center of D, k = 0

repeat

Use the Identification procedure to compute I∗k ⊆ Ik

Use the Partition procedure to subdivide Di, for each i ∈ I∗k

Define the new partition Hk+1

Set k = k + 1

until (stopping criterion satisfied)

return fmin = min{f(c) : c ∈ Ck}, Xmin = {c ∈ Ck : f(c) = fmin},
with Ck = {centers of the hyperintervals in Hk}

Figure 1: Sketch of the original DIRECT algorithm.

with ℓ, u ∈ Rn and −∞ < ℓi < ui < +∞, i = 1, . . . , n, through suitable scaling can be
restated as Problem (3).
The DIRECT algorithm proceeds by building finer and finer partitions of the initial domain
D. Let, at the beginning of the k-th iteration of the algorithm,

Hk = {Di : i ∈ Ik},

be a partition of D, with

Di = {x ∈ Rn : ℓi ≤ x ≤ ui}, for all i ∈ Ik,

where ℓi, ui ∈ [0, 1], i ∈ Ik, and Ik is the set of indices identifying the subsets of the current
partition.
Within the current partition Hk of D, a set of potentially optimal hyperintervals {Di : i ∈
I∗k} is selected by means of a so-called identification procedure. Then, each hyperinterval
Di, i ∈ I∗k , is further partitioned into smaller hyperintervals by means of a so-called
partition procedure, thus giving birth to partition Hk+1 for the next iteration. The latter
two-phase process continues until a prescribed number of iterations or function evaluations
has been performed or another more sophisticated stopping criterion is met (see, e.g.,
[20, 24, 26]). In Figure 1, a very basic scheme of the DIRECT algorithm is reported

The identification procedure, basically selects the more “promising” hyperintervals, i.e.
those ones which are more likely to contain a global minimum point of Problem (3). More
specifically, let us recall the following definition of potentially optimal hyperinterval [16].

Definition 4 (Potential optimality) Given a partition Hk = {Di : i ∈ Ik} of D and a
scalar ε > 0, an hyperinterval Dh ∈ Hk is potentially optimal if a constant L̄h exists such
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that:

f(xh)−
L̄h

2
‖uh − ℓh‖ ≤ f(xi)−

L̄h

2
‖ui − ℓi‖, ∀ i ∈ Ik (4)

f(xh)−
L̄h

2
‖uh − ℓh‖ ≤ fmin − ǫ|fmin| (5)

where
fmin = min

i∈Ik
f
(

xi
)

As it can be noted, the notion of potential optimality is based on some measure of the
hyperinterval itself and on the value of f(x) at its center. The identification procedure, at
iteration k, computes the set I∗k of all potentially optimal hyperintervals indices.

As for the partition procedure, let us suppose that hyperinterval Dh, h ∈ I∗k , has been
selected for further subdivision. Let δ and J be the measure of the longest edge and,
respectively, the set of the longest edges of Dh, i.e.,

δ = max
1≤j≤n

(uh − ℓh)j , and,

J = {j ∈ {1, . . . , n} : (uh − ℓh)j = δ},

Then, 2m, with m = |J |, new points are defined, i.e., for every j ∈ J ,

chj = ch +
δ

3
ej , chj+m = ch −

δ

3
ej ,

and the objective function is evaluated at these new points. Finally, hyperinterval Dh is
partitioned into 2m + 1 smaller hyperintervals having the latter points plus ch as their
centers. If there are multiple longest edges, the partition is carried out in such a way that
the biggest new hyperintervals contain the points with the best function values.

b
xh

Dh

b

b

b

b b
xh0 xh1xh3

xh2

xh4

b

b

b

b b
xh0 xh1xh3

Dh2

Dh4

b

b

b

b b
Dh0 Dh1Dh3

Dh2

Dh4

Figure 2: Hyperinterval partitioning example

Figure 2 shows an illustrative example of the behavior of the partition procedure. In the
example we assume that the lowest objective function value is attained at the point xh4

and this determines the order in which edges are subdivided, thus making Dh4 one of the
largest hyperintervals after subdivision.

The minimum of f over all the centers of the final partition, and the corresponding centers,
provide an approximate solution to the problem.

6



Further details on the original DIRECT algorithm can be found in [16, 19]. The convergence
of DIRECT is proved (see, e.g., [16, 19]) by showing that the set of sampled points, i.e.
hyperinterval’s centers, becomes everywhere dense in D as the number of iterations k goes
to infinity. For a thorough convergence analysis of DIRECT-type algorithms, we refer the
interested reader to [17, 20, 25, 26].

3 The multi-objective DIRECT (MODIR) algorithm

In this section, we extend the basic DIRECT algorithm for single-objective optimization
problems, to the solution of the multi-objective optimization Problem (1). To this aim,
two aspects are to be specified, namely,

i) the handling of the nonlinear constraints and

ii) the definition of potential optimality for multi-objective problems.

These two aspects will be discussed in the following.

Handling of the nonlinear constraints. Drawing inspiration from [22], given Problem (1)
and a vector of (penalty) parameters εi > 0, i = 1, . . . ,m, we introduce the following
penalty functions

Zj(x; ε) = fj(x) +
m
∑

i=1

1

εi
max{0, gi(x)}, for all j = 1, . . . , q.

Then, in place of the nonlinearly constrained Problem (1), we define the following penalized
and bound constrained multi-objective problem

min Z(x; ε) = (Z1(x; ε), . . . , Zq(x; ε))
⊤

s.t. ℓ ≤ x ≤ u,
(6)

where ε = (ε1, . . . , εm)⊤. Note that, as showed in [22], for sufficiently small values of the
penalty parameters εi, i = 1, . . . ,m, solving Problem (6) is equivalent to solving Problem
(1).

Multi-objective potential optimality. In the case of single-objective optimization, the first
inequality of Definition 4 basically states that an hyperinterval is deemed potentially
optimal when it is able to provide a lower bound on the objective function which is equal
to (if not better than) the best lower bound provided by all other hyperintervals. When
more than one objective function is present, one might extend Definition 4 by saying that
Dh is potentially optimal if a constant L̄h exists such that, for all other Di,

fj(x
h)−

L̄h

2
‖uh − ℓh‖ ≤ fj(x

i)−
L̄h

2
‖ui − ℓi‖, ∀ j = 1, . . . , q,

i.e., Dh is potentially optimal when it is potentially optimal with respect to all the objective
functions at the same time. Unfortunately, for non-trivial multi-objective problems, such
a definition would be useless since no such hyperintervals might exist. A more thorough
analysis of the situation led us to the introduction of a condition weaker than the above one.
More in particular, we introduce the following definition of potential Pareto-optimality.
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Definition 5 (Potential Pareto-optimality) Given a partition {Di : i ∈ Ik} of D, an
hyperinterval Dh is potentially Pareto-optimal if a constant L̄h exists such that, for all
i ∈ Ik and index ji ∈ {1, . . . , q} exists which satisfies

fji(x
h)−

L̄h

2
‖uh − ℓh‖ ≤ fji(x

i)−
L̄h

2
‖ui − ℓi‖. (7)

Concerning the above definition, it can be noted that an hyperinterval Dh is deemed
potentially Pareto-optimal if, for all other Di, inequality (7) holds for at least an objective
function index. Furthermore, we also note that the set of potentially Pareto-optimal
hyperintervals is a superset of potentially optimal hyperintervals with respect to every
single-objective function. More precisely, let us define I

j,∗
k the set of potentially optimal

hyperintervals indices with respect to objective function fj(x), j = 1, . . . , q, and I∗k the set
of potentially Pareto-optimal hyperintervals indices, then

I
j,∗
k ⊆ I∗k , for all j = 1, . . . , q.

Furthermore, we remark that, from Definition 5, it follows that set I∗k contains at least an
index of one of the largest hyperintervals belonging to the current partition Hk. Namely,

I∗k ∩ Imax
k 6= ∅,

where
Imax
k =

{

i ∈ Ik :
∥

∥ui − ℓi
∥

∥ = dmax
k

}

, dmax
k = max

i∈Ik

∥

∥ui − ℓi
∥

∥ .

The latter consideration is of paramount importance since it allows us to conclude that
the set of hyperintervals centers becomes dense in the initial domain D as the iterations
go to infinity (see Proposition 2 of [20]). Then, at least in the limit, the algorithm would
sample a point arbitrarily close to any given Pareto optimal solution of Problem (6) and,
provided that ε is sufficiently small, of the original constrained Problem (1).

Algorithm MODIR. When it comes to the actual implementation of the identification pro-
cedure, namely the selection of the potential Pareto-optimal hyperintervals (according to
Definition 5), it turns out that such a procedure would be very expensive so as to make the
algorithm too slow to be useful even for small problems. Hence, a more efficient procedure
must be defined which approximates the “ideal” selection procedure.
To this aim, it is worth recalling Definition 4 for single-objective problems and considering
what inequalities (4) and (5) imply. To better understand the meaning of inequalities (4)
and (5), in Figure 3 we report the partition H obtained by DIRECT at a generic iteration.
Specifically, in the graph, every hyperinterval Di ∈ H (with i ∈ I) is represented by a point
on the Cartesian plane with hyperinterval diameters on the x-axis and centroid function
values on the y-axis. Now, inequality (4) in Definition 4 forces (potentially optimal)
hyperintervals to be on the lower right part of the convex hull of the set of points, except
for the points not satisfying inequality (5). Further, note that the set of potentially optimal
hyperintervals in Figure 3 is a subset of the set of points that are not dominated when we
consider the bi-objective problem

min
i∈I

(f(ci),−||ui − ℓi||)⊤.

8



Box diameter
F
u
n
ct
io
n
va
lu
e

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

fmin

fmin − ε|fmin|

Figure 3: Potentially optimal hyperintervals

Such points are evidenced by circles in Figure 3.
In a multi-objective context, we might extend the above reasoning by selecting those hy-
perintervals whose representative points are not dominated for the multi-objective problem
(with q + 1 objective functions)

min
i∈I

(Z1(c
i), . . . , Zq(c

i),−||ui − ℓi||)⊤. (8)

To be more precise, let H = {Di : i ∈ I} be the current partition of the initial domain.
Given a penalty parameter ε > 0 and set I defining H, let us define

SI =
{

(Z1(c
i; ε), . . . , Zq(c

i; ε),−‖ui − ℓi‖)⊤ : i ∈ I
}

.

The (multi-objective) identification procedure that we propose consists in defining set I∗

as the set of indices of non-dominated (q + 1)-tuples belonging to the finite set SI .

Summarizing, algorithm MODIR can be obtained from the DIRECT algorithm by replacing
the (single-objective) identification procedure of DIRECT with the multi-objective identifi-
cation procedure just described.
As concerns the theoretical properties of algorithm MODIR, they are a straightforward
consequence of the definition of both the partition and identification procedures. Let us
recall from [20], that algorithm MODIR produces certain sequences of hyperintervals {Dik}.
These sequences can be defined by associating to every hyperinterval Dik , with ik ∈ Ik, a
predecessor Dik−1 , with ik−1 ∈ Ik−1, as follows:

- if hyperinterval Dik has been generated at the k-th iteration, then Dik−1 is the hy-
perinterval which has been partitioned at the k-th iteration and which has generated
hyperinterval Dik ;

- if hyperinterval Dik has not been generated at the k-th iteration than Dik−1 = Dik .

Then, by definition, all the sequences {Dik} are nested sequences, i.e. sequences such
that Dik ⊆ Dik−1 . Among such sequences, of particular importance are the strictly nested
sequences, namely those sequences for which Dik ⊂ Dik−1 infinitely many times.
Now, for algorithm MODIR the following proposition can be stated.
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Set D0 = D, H0 = {D0}, I0 = {0}, c = center of D, k = 0

repeat

Use the (multi-objective) Identification procedure to compute I∗k ⊆ Ik

Use the Partition procedure to subdivide Di, for each i ∈ I∗k

Define the new partition Hk+1

Set k = k + 1

until (stopping criterion satisfied)

return P ≡ {c ∈ Ck : ∄ c̃ ∈ Ck that dominates c}

Figure 4: Sketch of Algorithm MODIR.

Proposition 1 The following statements hold for algorithm MODIR.

(i) All the sequences of hyperintervals {Dik} produced by algorithm MODIR are strictly
nested.

(ii) For every x̃ ∈ D, algorithm MODIR produces a strictly nested sequence of hyperinter-
vals {Dik} such that

∞
⋂

k=0

Dik = {x̃}.

Proof. Since the set I∗ is set of indices of non-dominated (q + 1)-tuples belonging to the
finite set SI and since the last elements of the (q + 1)-tuples of the set SI are given by
−‖ui − ℓi‖) for i ∈ I, it results that

I∗k ∩ Imax
k 6= ∅.

Then points (i) and (ii) of the proposition follow again from Proposition 2 of [20] �

We note that in the single-objective global optimization field the DIRECT algorithm is
well known for having a good ability to locate interesting regions of the feasible domain,
but also for having a very slow convergence to a satisfactory approximation of the global
minimum, due to the generation of a dense set of points covering the whole feasible set.
In order to speed up its convergence it is a common technique to integrate the DIRECT

algorithm with a local search engine (see for example [2, 8, 19, 21]). This strategy will have
the same beneficial effects on our multi-objective version, leading to our hybrid algorithm
introduced in Section 4.2.

4 Numerical results

This section is devoted to the experimentation and comparison of the proposed multi-
objective approach. To this aim and considering that our approach is for constrained
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Figure 5: Comparison between DFMO and NSGA-II by using performance profiles with the
metrics Purity (left), Spread(Γ) (center), and Spread(∆) (right).

multi-objective global optimization problems, we adopt the collection of problems re-
cently proposed in [22]. This collection is composed by 214 nonlinearly constrained multi-
objective problems with n ∈ [3, 30], q ∈ [2, 4] and m ∈ [1, 29]. To have a feeling of how
difficult these problems are in terms of global Pareto optimality, in Figure 5 we report
comparison between the local method proposed in [22] DFMO and the well-known genetic
algorithm NSGA-II [7]. The idea is to select those problems where there is a need for a
global optimization method as NSGA-II, neglecting those problems where DFMO has already
satisfactory performances. Both the codes have been run using their default settings for a
maximum of 20,000 function evaluations. NSGA-II has been run with a population of 100
individuals which, given the maximum number of function evaluations, amounts to 200
generations. Furthermore, since NSGA-II is a probabilistic code, for every problem we run
it ten times with different seeds of the random number sequence. Then, let Pi,j be the set
of non-dominated points found by the j-th run of NSGA-II on the i-th problem, and let

Pi = nondom





10
⋃

j=1

Pi,j



 .

Then, for problem i and run j, let vi,j = |Pi ∩ Pi,j|, i.e. the number of points found by
run j that are on the Pareto front defined by all of the runs. Using numbers vi,j , we can
define, for every problem i, the best worst and median run of NSGA-II. More precisely,
the best run is run jmax such that vi,jmax is maximum; the worst run is run jmin such that
vi,jmin

is minimum; the median run is run ̄ such that vi,̄ is the median value of the vi,j’s.

The results of the comparison between DFMO and NSGA-II are reported in Figure 5 in terms
of the Purity [1] and Spread metrics Γ and ∆ (both metrics have been defined in [6]) by
using performance profiles [11].
As it can be noted, DFMO performs quite well with respect to the average version of NSGA-II.
Furthermore, we can say that DFMO has a better efficiency, in terms of purity, than the best
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version of NSGA-II, even though it is less robust. This fact is indeed quite relevant since
it tells that the considered problems might not be too difficult in terms of global Pareto
optimality. However, this could also be explained by saying that the great majority of
problems are not difficult ones.

4.1 Results on hard test problems

Hence, among the 214 problems, we extract a subset of 38 “hard” problems, namely those
problems onto which DFMO performs poorly with respect to NSGA-II in terms of purity, that
is the most suitable metric to evaluate the global ability of a multi-objective optimization
method (see, e.g., [1, 6]). In Table 1 we report the features of these 38 “hard” problems.
In particular, we report, for each problem, the number n of variables, the number m

of nonlinear constraints, and the number q of objective functions. The column labeled
“Problem” reports the name of the constrained problem. This is composed by the name
of the unconstrained problem from the collection of [6], and by a parenthesized letter
which defines the constraint family according to the following table:

(a) gj(x) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, j = 1, . . . ,m, m = n− 2;
(b) gj(x) = (3− 2xj+1)xj+1 − xj − 2xj+2 + 2.5 ≤ 0, j = 1, . . . ,m, m = n− 2;
(c) gj(x) = x2

j + x2
j+1 + xjxj+1 − 2xj − 2xj+1 + 1 ≤ 0, j = 1, . . . ,m, m = n− 1;

(d) gj(x) = x2
j + x2

j+1 + xjxj+1 − 1 ≤ 0, j = 1, . . . ,m, m = n− 1;
(e) gj(x) = (3− 0.5xj+1)xj+1 − xj − 2xj+2 + 1 ≤ 0, j = 1, . . . ,m, m = n− 2;

(f) gj(x) =
∑n+1

i=1
((3− 0.5xj+1)xj+1 − xj − 2xj+2 + 1) ≤ 0, j = 1, . . . ,m, m = 1.

The comparison between DFMO and NSGA-II is reported in Figure 6. As we can see, now
the situation, at least in terms of purity, is almost reversed with DFMO performance near to
the worst version of NSGA-II rather than above the average version as in Figure 5. This,
in our opinion, reasonably qualifies these 38 problems as hard multi-objective problems
from the point of view of global Pareto optimality.

Now, in Figure 7, we report the comparison between algorithms MODIR and NSGA-II on the
set of hard problems. As it can be noted, the performance of MODIR is quite disappointing
since its profiles are worse than the worst version of NSGA-II. However, these results are
not that much unexpected. Indeed, the behavior of MODIR can be explained (to a large
extent) by recalling the limit of 20,000 function evaluations we imposed on the runs, and
the deterministic nature of algorithm MODIR. Such a limit is definitely too low for MODIR.
In fact, as a partitioning algorithm, MODIR spends many function evaluations exploring
“unattractive” regions of the feasible domain simply because at each iteration the largest
hyperinterval must be selected and further partitioned. This is a common feature (and
the main curse alas) of DIRECT-type algorithms. They exhibit quite a slow convergence,
meaning that they are quite robust but at the expense of a “huge” amount of function
evaluations. Particularly, it turns out that quite a large number of function evaluations
is consumed to guarantee the “everywhere dense” convergence property, which is why
DIRECT-type algorithms improve the estimate of the solution set slower and slower as the
iteration count grows.
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Problem n m q

DTLZ3 (c) 12 11 3

DTLZ3 (d) 12 11 3

DTLZ4 (d) 12 11 3

FES1 (a) 10 8 2

FES3 (a) 10 8 4

I2 (a) 8 6 3

I3 (c) 8 7 3

I5 (c) 8 7 3

L1ZDT4 (a) 10 8 2

L1ZDT4 (c) 10 9 2

L1ZDT4 (f) 10 1 2

L2ZDT2 (a) 30 28 2

L2ZDT2 (c) 30 29 2

L2ZDT3 (c) 30 29 2

L2ZDT6 (a) 10 8 2

L2ZDT6 (c) 10 9 2

L3ZDT1 (c) 30 29 2

L3ZDT2 (a) 30 28 2

L3ZDT3 (a) 30 28 2

Problem n m q

L3ZDT4 (a) 30 28 2

L3ZDT4 (c) 30 29 2

L3ZDT6 (a) 10 8 2

L3ZDT6 (c) 10 9 2

MOP2 (e) 4 2 2

MOP2 (f) 4 1 2

OKA2 (c) 3 2 2

QV1 (a) 10 8 2

QV1 (f) 10 1 2

TKLY1 (c) 4 3 2

TKLY1 (d) 4 3 2

WFG1 (a) 8 6 3

WFG1 (b) 8 6 3

ZDT1 (a) 30 28 2

ZDT2 (a) 30 28 2

ZDT4 (a) 10 8 2

ZDT4 (b) 10 8 2

ZDT4 (f) 10 1 2

ZDT6 (a) 10 8 2

Table 1: Characteristics of the hard multi-objective problems
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Figure 6: Comparison between DFMO and NSGA-II on the 38 hard problems by using
performance profiles with the metrics Purity (left), Spread(Γ) (center), and Spread(∆)
(right).
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Figure 7: Comparison between MODIR and NSGA-II on the 38 hard problems by using
performance profiles with the metrics Purity (left), Spread(Γ) (center), and Spread(∆)
(right).

Let maxnf be the budget of function evaluations and γ ∈ [0, 1]

(Phase 1) Compute P0 running MODIR for γ·maxnf function evaluations

(Phase 2) Compute P ∗ running DFMO for (1− γ)·maxnf function evaluations
starting from points in P0

return P ∗

Figure 8: Sketch of Algorithm MODIR+DFMO.

4.2 The hybrid scheme MODIR+DFMO

However, since we do believe in the good global ability of MODIR, drawing inspiration from
the approaches proposed in [8, 19, 2, 21] we can devise an hybrid algorithm by gluing
together MODIR and the local algorithm DFMO proposed in [22].
Indeed, a partial remedy to the slow convergence problem can be that of using MODIR

to carry out a first (rough) exploration of the search space thus producing some (rough)
estimate P of the solution set, i.e. the set of Pareto optimal points of Problem (1). Then,
set P is further improved by means of the “faster” multi-objective local optimization
algorithm DFMO.
More specifically, let Pk be the set of non-dominated points at the beginning of iteration
k of algorithm DFMO. Through the use of multi-objective linesearches along suitable direc-
tions, DFMO tries to improve set Pk into set Pk+1. For a detailed description of algorithm
DFMO and for a thorough analysis of its convergence we refer the interested reader to [22].
In Figure 8, we report a sketch of the hybrid scheme that we propose.
Note that, when maxnf = +∞,
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Figure 9: Comparison between MODIR+DFMO and NSGA-II on the 38 hard problems by using
performance profiles with the metrics Purity (left), Spread(Γ) (center), and Spread(∆)
(right).

- MODIR+DFMO turns to be MODIR provided that γ = 1;

- MODIR+DFMO turns to be DFMO provided that γ = 0.

In Figure 9, we report the comparison of the proposed hybrid algorithm where we set
maxnf= 20, 000 and

γ =
500 · n

maxnf
. (9)

As it can be noted, the performances of the hybrid algorithm, with respect to NSGA-II

on the hard problems, are quite better than those of MODIR alone. In fact, in terms of
purity, MODIR+DFMO is better than the average version of NSGA-II, and this is the most
significant performance measure in order to evaluate the global efficiency of our method.

4.3 Results on a real problem

In this subsection we consider an application related to a ship hull optimization problem.
More in particular, the industrial application presented pertains to the reliability-based
robust optimization of the hull form of a 100 m high-speed catamaran [3, 10], sailing in
head waves in the North Pacific Ocean. Figure 10 shows the model used at CNR-INSEAN
for the experiments and an example of the wave pattern obtained by URANS simulation
[15].
The problem is formulated as a multi-objective optimization aimed at (I) the reduction
of the expected value of the mean total resistance in irregular head waves at variable
speed and (II) the increase of the ship operability, with respect to a set of motion-related
constraints.
Specifically, the following problem is considered.
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Figure 10: High-speed catamaran: (a) CNR-INSEAN model and (b) URANS wave pattern
[15]

min (φ1(x), −φ2(x))
⊤

s.t. φ1(x) ≤ 0, φ2(x) ≥ 0,
g(x) ≤ 0,
ℓ ≤ x ≤ u

(10)

where φ1 and φ2 are the expected value of the mean total resistance and the ship operability
evaluated in irregular head wave for variable sea state and speed, respectively defined as

φ1(x) =

∫∫

S,U

R̄T (x, S, U) p (S,U) dUdS (11)

φ2(x) =

∫∫

S,U

J
⋂

j=1

[hj (x, S) ≤ 0]p (S,U) dUdS (12)

where R̄T is the mean value of the total resistance in irregular waves, x is the design
variable vector, S is the sea state, U is the speed, hj are the motion constraints, and p is
the joint probability density function of S and U . g is a geometrical constraint related to
the maximum overall beam. Details may be found in [4].
The design optimization problem is taken from [10]. For the sake of the present study,
objective function values are obtained by means of stochastic radial-basis functions inter-
polation (details may be found in [27]) of high-fidelity URANS simulations. Four design
variables (x) control the global shape modifications of the catamaran hull, based on the
Karhunen-Loève expansion of the shape modification vector [9]. The inequality constraints
in Problem (10) are needed to guarantee improvement with respect to the initial design.

Figure 11(a) shows P̃ , preliminary (and putative) Pareto solutions of Problem (10) which
can thus be considered a trade-off between operability and total resistance of the catama-
ran.

In Figure 11(b) comparison between P̃ and the front found by DFMO (with maxnf= 20, 000)
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Figure 11: Results for the ship hull optimization problem. Putative Pareto points are
reported in plot (a). Plots (b), (c), and (d) report comparison between points found by
DFMO, MODIR, and MODIR+DFMO, respectively, with the putative solutions.

is reported. As we can see, the behavior of DFMO is satisfactory except for the upper right
part of the front where DFMO evidently got trapped in local solutions of the problem.

The front found by algorithm MODIR (with maxnf= 20, 000) can be found in Figure 11(c).
Here, we can see that MODIR correctly reconstructs the upper right part of the front.
However, it again emerges the main drawback of MODIR when a relative small number of
function evaluations are allowed.

Finally, in Figure 11(d), we report the front found by the proposed hybrid algorithm
MODIR+DFMO with maxnf= 20, 000 and γ given by (9). It can be seen that the hybrid
algorithm reconstructs the upper right part of the front and also improves the central
part of the front, thus being the best algorithm for the considered ship hull optimization
problem.

5 Conclusions

In the paper, we presented MODIR, a multi-objective DIRECT algorithm for constrained
multi-objective problems. Furthermore, we proposed a hybrid method (MODIR+DFMO)
which uses the local algorithm DFMO to refine a set of non-dominated solutions computed
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by an initial exploration of the search domain by MODIR.
Algorithm MODIR is based on a brand new definition of Pareto potential optimality which
extends to the multi-objective context the potential optimality definition used within the
original DIRECT algorithm. We proposed a way to efficiently compute a superset of the set
of Pareto potentially optima hyperintervals.
In the numerical result section, we report the results obtained with algorithms MODIR

and MODIR+DFMO, on a set of “hard” test problems, and the comparison with the well-
known genetic algorithm NSGA-II for multi-objective problems. Further, we describe an
industrial problem related to the ship hull optimization of a high-speed catamaran. The
results obtained with the hybrid algorithm are very promising and confirm the efficiency
and effectiveness of the proposed approach.
Among the possible lines of future investigations, we would like to consider the following
two:

i) Study of more efficient ways to approximate (or to compute) the set of Pareto po-
tentially optimal hyperintervals (recall Definition 5) within the MODIR algorithm.

ii) Development of more clever ways to connect MODIR and DFMO in the hybrid scheme.
In particular, it would be advisable that calls to MODIR and DFMO were not simply
sequential but rather interspersed one with another using a bi-directional exchange
of information between global and local search engines.
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