13 research outputs found

    Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the <it>Plasmodium falciparum </it>merozoite surface protein 1 (MSP1<sub>19</sub>), inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP1<sub>19 </sub>had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP1<sub>19 </sub>would affect critical T-cell responses to epitopes in this antigen.</p> <p>Methods</p> <p>The cellular responses to wild-type MSP1<sub>19 </sub>and a panel of modified MSP1<sub>19 </sub>antigens were measured using an <it>in-vitro </it>assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to <it>Plasmodium falciparum </it>infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults.</p> <p>Results</p> <p>Interestingly, stimulation indices (SI) for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP1<sub>19</sub>. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu) had the highest stimulation index (SI up to 360) and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins.</p> <p>Conclusion</p> <p>This study suggests that specific MSP1<sub>19 </sub>variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.</p

    Immune mechanisms in malaria: new insights in vaccine development.

    No full text
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens

    Get PDF
    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines

    Optimization of the T-cell proliferation assay in fascioliasis using a non-radioactive method, the Alamar Blue Assay

    No full text
    T-cell proliferation studies are traditionally carried out with radioactive reagents or fluorescent reagents that require measurement with advanced technology instrumentation. We attempted to calibrate the optimal conditions suitable for the use of a non-radioactive assay for the measurement of a T-cell proliferation assay in bovine fascioliasis, but applicable to the study ofother infectious diseases in our developing country setting. Crude antigen extract was prepared from 15 adult Fasciola gigantica flukes. Cellular responses were detected by the proliferation of peripheral blood mononuclear cells (PBMC) in response to stimulation by serial dilutions of the crude antigen extract. The results showed that the antigen dilution 1:1,600 gave the highest PBMC proliferative response (Stimulation Index, S.I = 1.10± 0.2). Percentage reduced Alamar Blue was 27.3- 71.6%. This suggests that the cell-mediated immune response in bovine immunity to Fasciola infection may be reliablymeasured in our setting with the Alamar Blue Assay

    Cytokine profiles and antibody responses to Plasmodium falciparum malaria infection in individuals living in Ibadan, southwest Nigeria

    Get PDF
    Background: The ability of the host immune system to efficiently clear Plasmodium falciparum parasites during a malaria infection depends on the type of immune response mounted by the host.Study design: In a cross-sectional study, we investigated the cellular-and antibody responses in individuals with P. falciparum infection, in an attempt to identify immunological signs indicative of the development of natural immunity against malaria in Ibadan, Nigeria. Levels of IL-10, IL-12(p70), IFN-γ, and IgM, IgG and IgG1-4 subclasses in the serum of 36 symptomatic children with microscopically confirmed malaria parasitaemia and 54 asymptomatic controls were analysed by ELISA.Results: IFN-γ and IL-10 were significantly higher in the symptomatic children (p=0.009, p=0.025 respectively) than in the asymptomatic controls but no differences were seen for IL-12(p70). Estimated higher ratios of IFN-γ/IL-10 and IFN-γ/IL-12 were also observed in the symptomatic children while the asymptomatic controls had higher IL-12/IL-10 ratio. The mean concentration levels of anti-P. falciparum IgG1, IgG2, IgG3 antibodies were statistically significantly higher in the individuals >5 years of age tha

    Acquisition, maintenance and adaptation of invasion inhibitory antibodies against Plasmodium falciparum invasion ligands involved in immune evasion

    Get PDF
    Erythrocyte-binding antigens (EBAs) and P. falciparum reticulocyte-binding homologue proteins (PfRhs) are two important protein families that can vary in expression and utilization by P. falciparum to evade inhibitory antibodies. We evaluated antibodies at repeated time-points among individuals living in an endemic region in Nigeria over almost one year against these vaccine candidates. Antibody levels against EBA140, EBA175, EBA181, PfRh2, PfRh4, and MSP2, were measured by ELISA. We also used parasites with disrupted EBA140, EBA175 and EBA181 genes to show that all these were targets of invasion inhibitory antibodies. However, antigenic targets of inhibitory antibodies were not stable and changed substantially over time in most individuals, independent of age. Antibodies levels measured by ELISA also varied within and between individuals over time and the antibodies against EBA181, PfRh2 and MSP2 declined more rapidly in younger individuals (≤15 years) compared with older (>15). The breadth of high antibody responses over time was more influenced by age than by the frequency of infection. High antibody levels were associated with a more stable invasion inhibitory response, which could indicate that during the long process of formation of immunity, many changes not only in levels but also in functional responses are needed. This is an important finding in understanding natural immunity against malaria, which is essential for making an efficacious vaccine
    corecore