4,247 research outputs found

    Reasoning about the executability of goal-plan trees

    Get PDF
    User supplied domain control knowledge in the form of hierarchically structured agent plans is at the heart of a number of approaches to reasoning about action. This knowledge encodes the “standard operating procedures” of an agent for responding to environmental changes, thereby enabling fast and effective action selection. This paper develops mechanisms for reasoning about a set of hierarchical plans and goals, by deriving “summary information” from the conditions on the execution of the basic actions forming the “leaves” of the hierarchy. We provide definitions of necessary and contingent pre-, in-, and postconditions of goals and plans that are consistent with the conditions of the actions forming a plan. Our definitions extend previous work with an account of both deterministic and non-deterministic actions, and with support for specifying that actions and goals within a (single) plan can execute concurrently. Based on our new definitions, we also specify requirements that are useful in scheduling the execution of steps in a set of goal-plan trees. These requirements essentially define conditions that must be protected by any scheduler that interleaves the execution of steps from different goal-plan trees

    A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes

    Get PDF
    Peptides that are antigenic for T lymphocytes are ligands for two receptors, the class I or II glycoproteins that are encoded by genes in the major histocompatibility complex, and the idiotypic / chain T-cell antigen receptor1–9. That a peptide must bind to an MHC molecule to interact with a T-cell antigen receptor is the molecular basis of the MHC restriction of antigen-recognition by T lymphocytes10,11. In such a trimolecular interaction the amino-acid sequence of the peptide must specify the contact with both receptors: agretope residues bind to the MHC receptor and epitope residues bind to the T-cell antigen receptor12,13. From a compilation of known antigenic peptides, two algorithms have been proposed to predict antigenic sites in proteins. One algorithm uses linear motifs in the sequence14, whereas the other considers peptide conformation and predicts antigenicity for amphipathic -helices15,16. We report here that a systematic delimitation of an antigenic site precisely identifies a predicted pentapeptide motif as the minimal antigenic determinant presented by a class I MHC molecule and recognized by a cytolytic T lymphocyte clone

    The effect of a verbal concurrent task on visual precision in working memory

    Get PDF
    By investigating the effect of individualized verbal load on a visual working memory task, we investigated whether working memory is better captured by modality specific stores or a general attentional resource. A visual measure was used that allows for the precision of representations in working memory to be quantified. Bayesian analyses were employed to contrast the likelihood of our data assuming a small versus a large effect, as predicted by the differing accounts. We found evidence that the effect of verbal load on visual precision and binary feature recall was small. The results were indeterminate for the size of the dual-task effect on verbal accuracy and the probability of recalling a continuous target feature. These results, in part, support a multiple component account of working memory. An analysis of how the chosen effect intervals affect the results is also reported, highlighting the importance of making specific predictions in the literature

    Virtual patients design and its effect on clinical reasoning and student experience : a protocol for a randomised factorial multi-centre study

    Get PDF
    Background Virtual Patients (VPs) are web-based representations of realistic clinical cases. They are proposed as being an optimal method for teaching clinical reasoning skills. International standards exist which define precisely what constitutes a VP. There are multiple design possibilities for VPs, however there is little formal evidence to support individual design features. The purpose of this trial is to explore the effect of two different potentially important design features on clinical reasoning skills and the student experience. These are the branching case pathways (present or absent) and structured clinical reasoning feedback (present or absent). Methods/Design This is a multi-centre randomised 2x2 factorial design study evaluating two independent variables of VP design, branching (present or absent), and structured clinical reasoning feedback (present or absent).The study will be carried out in medical student volunteers in one year group from three university medical schools in the United Kingdom, Warwick, Keele and Birmingham. There are four core musculoskeletal topics. Each case can be designed in four different ways, equating to 16 VPs required for the research. Students will be randomised to four groups, completing the four VP topics in the same order, but with each group exposed to a different VP design sequentially. All students will be exposed to the four designs. Primary outcomes are performance for each case design in a standardized fifteen item clinical reasoning assessment, integrated into each VP, which is identical for each topic. Additionally a 15-item self-reported evaluation is completed for each VP, based on a widely used EViP tool. Student patterns of use of the VPs will be recorded. In one centre, formative clinical and examination performance will be recorded, along with a self reported pre and post-intervention reasoning score, the DTI. Our power calculations indicate a sample size of 112 is required for both primary outcomes

    Manipulating infrared photons using plasmons in transparent graphene superlattices

    Full text link
    Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.Comment: under revie

    CWRML: representing crop wild relative conservation and use data in XML

    Get PDF
    Background Crop wild relatives are wild species that are closely related to crops. They are valuable as potential gene donors for crop improvement and may help to ensure food security for the future. However, they are becoming increasingly threatened in the wild and are inadequately conserved, both in situ and ex situ. Information about the conservation status and utilisation potential of crop wild relatives is diverse and dispersed, and no single agreed standard exists for representing such information; yet, this information is vital to ensure these species are effectively conserved and utilised. The European Community-funded project, European Crop Wild Relative Diversity Assessment and Conservation Forum, determined the minimum information requirements for the conservation and utilisation of crop wild relatives and created the Crop Wild Relative Information System, incorporating an eXtensible Markup Language (XML) schema to aid data sharing and exchange. Results Crop Wild Relative Markup Language (CWRML) was developed to represent the data necessary for crop wild relative conservation and ensure that they can be effectively utilised for crop improvement. The schema partitions data into taxon-, site-, and population-specific elements, to allow for integration with other more general conservation biology schemata which may emerge as accepted standards in the future. These elements are composed of sub-elements, which are structured in order to facilitate the use of the schema in a variety of crop wild relative conservation and use contexts. Pre-existing standards for data representation in conservation biology were reviewed and incorporated into the schema as restrictions on element data contents, where appropriate. Conclusion CWRML provides a flexible data communication format for representing in situ and ex situ conservation status of individual taxa as well as their utilisation potential. The development of the schema highlights a number of instances where additional standards-development may be valuable, particularly with regard to the representation of population-specific data and utilisation potential. As crop wild relatives are intrinsically no different to other wild plant species there is potential for the inclusion of CWRML data elements in the emerging standards for representation of biodiversity data

    Comets, historical records and vedic literature

    Full text link
    A verse in book I of Rigveda mentions a cosmic tree with rope-like aerial roots held up in the sky. Such an imagery might have ensued from the appearance of a comet having `tree stem' like tail, with branched out portions resembling aerial roots. Interestingly enough, a comet referred to as `heavenly tree' was seen in 162 BC, as reported by old Chinese records. Because of weak surface gravity, cometary appendages may possibly assume strange shapes depending on factors like rotation, structure and composition of the comet as well as solar wind pattern. Varahamihira and Ballala Sena listed several comets having strange forms as reported originally by ancient seers such as Parashara, Vriddha Garga, Narada and Garga. Mahabharata speaks of a mortal king Nahusha who ruled the heavens when Indra, king of gods, went into hiding. Nahusha became luminous and egoistic after absorbing radiance from gods and seers. When he kicked Agastya (southern star Canopus), the latter cursed him to become a serpent and fall from the sky. We posit arguments to surmise that this Mahabharata lore is a mythical recounting of a cometary event wherein a comet crossed Ursa Major, moved southwards with an elongated tail in the direction of Canopus and eventually went out of sight. In order to check whether such a conjecture is feasible, a preliminary list of comets (that could have or did come close to Canopus) drawn from various historical records is presented and discussed.Comment: This work was presented in the International Conference on Oriental Astronomy held at IISER, Pune (India) during November, 201

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure

    Update on emergency contraception

    Get PDF
    pre-printEmergency contraception (EC) is any method used after sexual intercourse to prevent pregnancy. This article provides an overview of the history of EC methods and describes the current availability of oral and intrauterine EC. Oral forms include the Yuzpe regimen (combining ethinyl estradiol and levonorgestrel), levonorgestrel-only pills, and ulipristal acetate, which is a new emergency contraceptive drug recently approved by the US Food and Drug Administration. The copper T-380A intrauterine device can also be used for EC. Information about dosing, timing, access, and other considerations in the provision of EC is covered. Clinicians should be aware of all available options in order to counsel women in need of EC appropriately
    • …
    corecore