5 research outputs found

    The Evolution of Affordable Technologies in Liquid Biopsy Diagnostics: The Key to Clinical Implementation

    No full text
    Cancer remains a leading cause of death worldwide, despite many advances in diagnosis and treatment. Precision medicine has been a key area of focus, with research providing insights and progress in helping to lower cancer mortality through better patient stratification for therapies and more precise diagnostic techniques. However, unequal access to cancer care is still a global concern, with many patients having limited access to diagnostic tests and treatment regimens. Noninvasive liquid biopsy (LB) technology can determine tumour-specific molecular alterations in peripheral samples. This allows clinicians to infer knowledge at a DNA or cellular level, which can be used to screen individuals with high cancer risk, personalize treatments, monitor treatment response, and detect metastasis early. As scientific understanding of cancer pathology increases, LB technologies that utilize circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) have evolved over the course of research. These technologies incorporate tumour-specific markers into molecular testing platforms. For clinical translation and maximum patient benefit at a wider scale, the accuracy, accessibility, and affordability of LB tests need to be prioritized and compared with gold standard methodologies in current use. In this review, we highlight the range of technologies in LB diagnostics and discuss the future prospects of LB through the anticipated evolution of current technologies and the integration of emerging and novel ones. This could potentially allow a more cost-effective model of cancer care to be widely adopted

    Prevalence of ctDNA in early screen-detected breast cancers using highly sensitive and specific dual molecular barcoded personalised mutation assays

    No full text
    Breast screening has low sensitivity in many patients, and circulating biomarkers may be useful adjuncts to mammography. Circulating tumour DNA (ctDNA) has been studied as a potential biomarker in primary breast cancer (BC)1 and patient-specific mutation panels for detection of cancer recurrence and monitoring of residual disease via ctDNA has potential.2 The role of ctDNA in the detection and monitoring of asymptomatic, screen-detected BC remains unclear, since these patients generally have earlier-stage disease. Here, we report the first study to investigate the prevalence of ctDNA in an unbiased breast screening setting comparing women with early stage 1 and stage 2 BC, detected on incidental routine mammograms. We used a newly developed sequencing technology (Ion Ampliseq™ HD; Thermo Fisher Scientific, Waltham, MA) that uses dual unique molecular identifiers or barcodes to cluster ‘families’ of the same molecule for ctDNA detection. This provides a sensitivity equivalent to digital droplet polymerase chain reaction (PCR) (confident detection of three molecules of ctDNA in 10 000 human haploid genome equivalents) with >99% specificity for single nucleotide variants, hotspots, indels, copy number variations, and fusions.3 With the exception of one study of 12 hepatobiliary cancers in advanced patients,4 this is also the first report of the use of this technology.</p

    The presence of disseminated tumour cells in the bone marrow is inversely related to circulating free DNA in plasma in breast cancer dormancy.

    Get PDF
    BACKGROUND: The aim of this study was to gain insight into breast cancer dormancy by examining different measures of minimal residual disease (MRD) over time in relation to known prognostic factors. METHODS: Sixty-four primary breast cancer patients on follow-up (a median of 8.3 years post surgery) who were disease free had sequential bone marrow aspirates and blood samples taken for the measurement of disseminated tumour cells (DTCs), circulating tumour cells (CTCs) by CellSearch and qPCR measurement of overlapping (96-bp and 291-bp) amplicons in circulating free DNA (cfDNA). RESULTS: The presence of CTCs was correlated with the presence of DTCs measured by immunocytochemistry (P=0.01) but both were infrequently detected. Increasing cfDNA concentration correlated with ER, HER2 and triple-negative tumours and high tumour grade, and the 291-bp amplicon was inversely correlated with DTCs measured by CK19 qRT-PCR (P=0.047). CONCLUSION: Our results show that breast cancer patients have evidence of MRD for many years after diagnosis despite there being no overt evidence of disease. The inverse relationship between bone marrow CK19 mRNA and the 291-bp amplicon in cfDNA suggests that an inverse relationship between a measure of cell viability in the bone marrow (DTCs) and cell death in the plasma occurs during the dormancy phase of breast cancer

    Plasma cell-free DNA (cfDNA) as a predictive and prognostic marker in patients with metastatic breast cancer

    Get PDF
    Background: Breast cancer (BC) is the most common cancer in women, and despite the introduction of new screening programmes, therapies and monitoring technologies, there is still a need to develop more useful tests for monitoring treatment response and to inform clinical decision making. The purpose of this study was to compare circulating cell-free DNA (cfDNA) and circulating tumour cells (CTCs) with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase (AP)) as predictors of response to treatment and prognosis in patients with metastatic breast cancer (MBC). Methods: One hundred ninety-four female patients with radiologically confirmed MBC were recruited to the study. Total cfDNA levels were determined by qPCR and compared with CELLSEARCH® CTC counts and CA15-3 and alkaline phosphatase (AP) values. Blood biomarker data were compared with conventional tumour markers, treatment(s) and response as assessed by RECIST and survival. Non-parametric statistical hypothesis tests were used to examine differences, correlation analysis and linear regression to determine correlation and to describe its effects, logistic regression and receiver operating characteristic curve (ROC curve) to estimate the strength of the relationship between biomarkers and clinical outcomes and value normalization against standard deviation to make biomarker values comparable. Kaplan-Meier estimator and Cox regression models were used to assess survival. Univariate and multivariate models were performed where appropriate. Results: Multivariate analysis showed that both the amount of total cfDNA (p value = 0.024, HR = 1.199, CI = 1.024-1.405) and the number of CTCs (p value = 0.001, HR = 1.243, CI = 1.088-1.421) are predictors of overall survival (OS), whereas total cfDNA levels is the sole predictor for progression-free survival (PFS) (p value = 0.042, HR = 1.193, CI = 1.007-1.415) and disease response when comparing response to non-response to treatment (HR = 15.917, HR = 12.481 for univariate and multivariate analysis, respectively). Lastly, combined analysis of CTCs and cfDNA is more informative than the combination of two conventional biomarkers (CA15-3 and AP) for prediction of OS. Conclusion: Measurement of total cfDNA levels, which is a simpler and less expensive biomarker than CTC counts, is associated with PFS, OS and response in MBC, suggesting potential clinical application of a cheap and simple blood-based test

    The pioneer factor PBX1 is a novel driver of metastatic progression in ERα-positive breast cancer.

    Get PDF
    Over 30% of ERα breast cancer patients develop relapses and progress to metastatic disease despite treatment with endocrine therapies. The pioneer factor PBX1 translates epigenetic cues and mediates estrogen induced ERα binding. Here we demonstrate that PBX1 plays a central role in regulating the ERα transcriptional response to epidermal growth factor (EGF) signaling. PBX1 regulates a subset of EGF-ERα genes highly expressed in aggressive breast tumours. Retrospective stratification of luminal patients using PBX1 protein levels in primary cancer further demonstrates that elevated PBX1 protein levels correlate with earlier metastatic progression. In agreement, PBX1 protein levels are significantly upregulated during metastatic progression in ERα-positive breast cancer patients. Finally we reveal that PBX1 upregulation in aggressive tumours is partly mediated by genomic amplification of the PBX1 locus. Correspondingly, ERα-positive breast cancer patients carrying PBX1 amplification are characterized by poor survival. Notably, we demonstrate that PBX1 amplification can be identified in tumor derived-circulating free DNA of ERα-positive metastatic patients. Metastatic patients with PBX1 amplification are also characterized by shorter relapse-free survival. Our data identifies PBX1 amplification as a functional hallmark of aggressive ERα-positive breast cancers. Mechanistically, PBX1 amplification impinges on several critical pathways associated with aggressive ERα-positive breast cancer
    corecore