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Abstract

Background: Breast cancer (BC) is the most common cancer in women, and despite the introduction of new
screening programmes, therapies and monitoring technologies, there is still a need to develop more useful tests for
monitoring treatment response and to inform clinical decision making.
The purpose of this study was to compare circulating cell-free DNA (cfDNA) and circulating tumour cells (CTCs)
with conventional breast cancer blood biomarkers (CA15-3 and alkaline phosphatase (AP)) as predictors of response
to treatment and prognosis in patients with metastatic breast cancer (MBC).

Methods: One hundred ninety-four female patients with radiologically confirmed MBC were recruited to the study.
Total cfDNA levels were determined by qPCR and compared with CELLSEARCH® CTC counts and CA15-3 and
alkaline phosphatase (AP) values. Blood biomarker data were compared with conventional tumour markers,
treatment(s) and response as assessed by RECIST and survival.
Non-parametric statistical hypothesis tests were used to examine differences, correlation analysis and linear
regression to determine correlation and to describe its effects, logistic regression and receiver operating
characteristic curve (ROC curve) to estimate the strength of the relationship between biomarkers and clinical
outcomes and value normalization against standard deviation to make biomarker values comparable. Kaplan–Meier
estimator and Cox regression models were used to assess survival. Univariate and multivariate models were
performed where appropriate.

Results: Multivariate analysis showed that both the amount of total cfDNA (p value = 0.024, HR = 1.199, CI = 1.024–
1.405) and the number of CTCs (p value = 0.001, HR = 1.243, CI = 1.088–1.421) are predictors of overall survival (OS),
whereas total cfDNA levels is the sole predictor for progression-free survival (PFS) (p value = 0.042, HR = 1.193, CI =
1.007–1.415) and disease response when comparing response to non-response to treatment (HR = 15.917, HR =
12.481 for univariate and multivariate analysis, respectively). Lastly, combined analysis of CTCs and cfDNA is more
informative than the combination of two conventional biomarkers (CA15-3 and AP) for prediction of OS.

Conclusion: Measurement of total cfDNA levels, which is a simpler and less expensive biomarker than CTC counts,
is associated with PFS, OS and response in MBC, suggesting potential clinical application of a cheap and simple
blood-based test.
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Introduction
Breast cancer (BC) is the most common cancer in
women [1]. The introduction of screening programmes
and the development of targeted therapies has signifi-
cantly improved BC survival rates in the last 40 years [2,
3]. However, although many patients are initially respon-
sive to therapies, resistance can develop and lead to re-
lapse and ultimately death from metastatic disease [4].
Patients with metastatic breast cancer (MBC) are moni-
tored by radiological imaging; primarily by computed
tomography (CT) on average every 3 months, and scans
are assessed using Response Evaluation Criteria in Solid
Tumour (RECIST) criteria to determine disease response
to treatment. FLT-PET and magnetic resonance imaging
(MRI) is also carried out in some centres, but these tests
are costly, insensitive and less readily accessible. Along-
side imaging, cancer antigen 15-3 (CA15-3) and alkaline
phosphatase (AP) are often measured, although these
lack in both sensitivity and specificity [5, 6]. Therefore,
there is a need to develop more useful tests for monitor-
ing treatment response and to inform clinical decision
making.
Blood-based biomarkers, including circulating cell-free

DNA (cfDNA) and circulating tumour cells (CTCs) have
attracted considerable attention in recent years due to
their potential as minimally invasive tools for cancer
monitoring. A CTC count of ≥ 5 CTCs/7.5 ml blood, as
determined by CellSearch®, is an independent predictor
of poor prognosis in MBC, irrespective of other clinical
parameters [7]. CTC counts can also be used to guide
therapy selection in newly diagnosed patients receiving
first-line systemic treatment [7, 8]. Previous studies have
proposed that CTC counts are superior to conventional
radiological measures as predictor of prognosis and re-
sponse in patients with MBC [8, 9], but as yet, the appli-
cation of total cfDNA levels has not been widely studied
in MBC [10, 11]. Circulating cfDNA is derived from a
combination of apoptosis, necrosis and active secretion
from cancer cells and is found at higher levels in patients
with advanced cancer than in either healthy individuals
[12] or patients with early-stage disease [13]. The
tumour-derived fraction of this total cfDNA, termed cir-
culating tumour DNA (ctDNA), is under wide investiga-
tion as a prognostic biomarker in several types of
cancer, including breast, lung and colon cancers [14–
17]. Although much ongoing research is focussed on
profiling of ctDNA, these analyses are currently expen-
sive and not yet established in the clinic. We therefore
compared conventional breast cancer blood biomarkers
(CA15-3 and alkaline phosphatase (AP)) with CTC
counts and simple measurement of total cfDNA levels,
rather than ctDNA profiles to assess the best predictor
of response to treatment and prognosis in 194 patients
with metastatic breast cancer. The results indicate that

measurement of total cfDNA levels is a good predictor
of response and survival in patients with MBC suggest-
ing potential clinical application of a cheap and simple
blood-based test.

Methods
Patients and demographics
Between February 2012 and July 2016, 194 female pa-
tients with radiologically confirmed MBC, attending the
breast oncology clinic at Charing Cross Hospital,
London, were recruited to this study. One hundred
ninety-three patients had proven metastatic disease, and
one had unresectable locally recurrent disease.
Thirty-two patients of the 194 patients were off treat-

ment at the time of blood sampling, and the remainder
was receiving treatment for MBC. Details of treatment(s)
undergone by each patient at the time of blood sample
collection were obtained from the Imperial College NHS
electronic prescription system and where necessary, pa-
tient records. CT and MRI data were obtained from pa-
tient records and results confirmed by a consultant
radiologist to determine patient disease status at time of
blood collection. There were three orthogonal measure-
ments of the primary tumour and volume estimated
using a volume calculator, as described previously [18].
The maximal dimensions of the largest metastases

were provided—two max per organ as per RECIST cri-
teria. If there were multiple widespread lesions, then an
estimate of how much of the whole organ is infiltrated
with tumour was estimated visually. These were typically
lymph nodes, lungs, liver and occasional brain and ad-
renal metastasis.
Only lytic bony lesions were counted. Pleural and peri-

toneal diffuse disease was documented but only mea-
sured when there was a sizable mass. Irradiated bony or
CNS sites were followed where hopefully there was a
baseline but the disease may not be measurable.
Data from scans undergone at a time-point, generally

within 2 weeks, closest to that of sample collection were
used to evaluate disease response. Response to treatment
was assessed using RECIST criteria [19]. A total of 30
patients were responding to their treatment, 73 had
stable disease and 91 were progressing. The ER, PR and
HER2 status of the primary tumour and metastatic bi-
opsy where available were obtained from histology re-
ports (Table 1; Additional file 1).
Initially, a small subset of the population of only 36

breast cancer metastatic patients was selected to conduct
pilot studies. The main aim was to obtain preliminary
results regarding the effects of biomarkers on the differ-
ent clinical variables included in the study, as well as to
interrogate the possible implications of the tumour bulk,
as tumour volume and number of metastatic sites, with
the biomarkers or the clinical parameters included, as
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Table 1 Descriptive statistics of variables and clinical characteristics of patients included in the study
Clinicopathological feature, observed at time of sample

Collection Details n % of total

Age at time of sample collection (y*) Median 59.50 –

IQR* 20 –

Range 29-89 –

Time spent in studya (m*) Median 23 –

IQR* 27 –

Range 1-59 –

Statusb Alive 101 52.1

Deceased 93 47.9

ER status Positive 157 80.9

Negative 30 15.5

Unknown 7 3.6

PR status Positive 115 59.3

Negative 55 28.4

Unknown 24 12.4

HER2 status Positive 35 18.0

Negative 133 68.6

Unknown 26 13.4

CTCs/7.5 ml blood, by CellSearch® Median 0.000 –

IQR* 4.000 –

Range 0-6848 –

0–4 148 76.3

≥ 5 46 23.7

cfDNA yield (ng/μl) Median 0.120 –

IQR* 0.175 –

Range 0.003-5.460 –

< 0.306 146 75.3

≥ 0.306 48 24.7

CA15-3 (U/ml) Median 49.000 –

IQR* 149.250 –

Range 1-6313 –

< 32 67 34.5

≥ 32 127 65.5

AP (IU/L) Median 89.500 –

IQR* 46.750 –

Range 30-555 –

< 130 154 79.4

≥ 130 40 20.6

Treatment patient undergoing at the time of blood sampling Endocrine 95 49.0

Chemotherapyc 49 25.3

HER2-targeted therapyd 18 9.3

Off treatment 32 16.5

Disease response at time of blood sampling Responding 30 15.5

Stable disease 73 37.6

Progressive disease 91 46.9

After screening and recruitment, patients were followed-up through the study. HER2 status was determined by immunohistochemical and fluorescence in situ hybridization assays. A patient
was considered to have HER2-positive cancer if either assay was positive. CA15-3 and AP levels were determined form patient notes
IQR interquartile range, y years, m months
aTime from collection to end of study or death
bStatus of patients at the end of the study (deceased or alive)
cChemotherapy +/− endocrine therapy
dHER2 therapy +/− endocrine therapy
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response or survival. This small subset of the population
was used as well to determine the necessary sample size
to carry out the study (Additional file 2).

Measurement of biomarkers
Twenty milligrams of venous blood samples were col-
lected into K2EDTA tubes and processed by double cen-
trifugation to obtain plasma. Total cfDNA was extracted
from 3ml plasma using the Circulating Nucleic Acids
kit (Qiagen) and quantified through a StepOnePlus Real-
Time PCR System (Applied Biosystems) using a 96 bp
single copy TaqMan assay as described previously [20].
7.5 ml blood was separately collected into a CellSave
Preservative tube and processed and counted within 96 h
of collection using the CELLSEARCH® Circulating
Tumor Cell Kit (Menarini Silicon Biosystems), as de-
scribed previously [21, 22]. A threshold of 5 EpCAM+

CTC per 7.5 ml blood was selected to categorize the bio-
marker to low count (< 5 CTCs) and high counts (≥ 5

CTCs), based on previous studies [7, 23]. The total
cfDNA yield was categorized by optimizing the correl-
ation with clinical outcome based on ROC curve analysis
[10, 24, 25] and by analysing the significance of the cor-
relation with survival [24]. Both methods showed a
threshold of 0.306 ng/μl cfDNA above which levels were
considered elevated (Fig. 1).
CA15-3 and alkaline phosphatase (AP) values were ob-

tained from patient records. The upper limits of normal
values were 32 U/ml for CA15-3 and 130 IU/ml for AP,
respectively, in accordance with the clinical reference
ranges used routinely at Charing Cross Hospital.

Statistical analysis
Mann-Whitney-Wilcoxon and Kruskal-Wallis non-
parametric tests were used, when appropriate, to exam-
ine differences between baseline characteristics of the
patients. Spearman’s rank correlation coefficient and lin-
ear regression with Fishers test p value were used to de-
termine whether the variables were correlated or not,
and logistic regression with Wald statistic p value and
receiver operating characteristic curve (ROC curve) with
the area under the curve (AUC) were used to estimate
the strength of the relationship between biomarkers and
clinical outcomes. To make each of the 4 biomarkers
comparable as a continuous variable, each biomarker
was normalised against its own standard deviation. Uni-
variate and multivariate models were performed where
appropriate. Kaplan–Meier estimator and Cox regression
models were used to assess survival (overall survival
(OS) and progression-free survival (PFS)). Each model
was constructed using the counting process notation
(start, end, event) [26], where the date of blood collec-
tion was taken as the start and the date of last follow-up,

Table 2 Non-parametric correlation analysis of the four
biomarkers included in the study

Non-parametric correlations (Spearman’s rho)

CTC count cfDNA yield CA15-3 ALP

CTC count

Correlation coefficient

p value

cfDNA yield

Correlation coefficient 0.294

p value < 0.0001

CA15-3

Correlation coefficient 0.464 0.247

p value < 0.0001 0.001

AP

Correlation coefficient 0.392 0.193 0.370

p value < 0.0001 0.007 < 0.0001

Fig. 1 Determination of the optimum cut-off point for cfDNA yield
according to the patient status (alive vs deceased). A ROC curves
determine the cut-off point by minimizing the distance on the ROC
curve to the left top edge of the diagram (100% sensitivity and
100% specificity), by minimizing the Manhattan distance between
the points and the Youden’s index, which equals to maximize
sensitivity and specificity. B Survival analysis defines the optimal cut-
off as the point with the most significant (log-rank test) split. Hazard
ratios (HRs) were calculated, including 95% confidence intervals. Cox
regression and Kaplan–Meier analysis
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date of progression or date of death was considered the
end, with an agreed administrative censoring date of 31
July 2017. Survival curves were compared using the log-
rank test. Cox proportional-hazards regression analysis
was used to estimate univariate and multivariate hazard
ratios for progression-free survival and overall survival.
All statistical analyses were performed using SPSS 25.0

software. Power and sample size analysis were performed
using R package “pwr” version 1.2-2 (R version 3.5.1).

Results
Patient characteristics, treatment and disease response
An initial analysis was carried out using a subset of 36
patients to power the minimum number of patient

Table 4 Logistic regression analysis between stratified clinical parameter (response to treatment) and stratified or normalized
continuous biomarkers, showing the p value, odds ratio and the 95% confidence interval for this odds ratio. Univariate and
multivariate analysis
Categorical variable to analyse Variable p

value
Odds
ratio

95% CI for OR Type of
analysis

Type of variable

Lower Upper

Response (RECIST 2 categories) vs CTC threshold 0.030 5.133 1.174 22.450 Univariate Stratified biomarker

cfDNA threshold *Cannot be quantified

CA15-3 threshold 0.165 0.528 0.214 1.302

AP threshold 0.056 4.222 0.961 18.542

CTC threshold 0.265 2.502 0.499 12.534 **Multivariate

cfDNA threshold *Cannot be quantified

CA15-3 threshold 0.012 0.297 0.116 0.766

AP threshold 0.171 3.070 0.616 15.298

Response (RECIST 2 categories) vs CTC count 0.405 27.561 0.011 67106.275 Univariate Normalized continuous biomarker

cfDNA yield 0.035 15.917 1.223 207.106

CA15-3 levels 0.722 0.938 0.661 1.331

AP levels 0.139 1.611 0.856 3.031

CTC count 0.809 1.445 0.073 28.702 **Multivariate

cfDNA yield 0.055 12.481 0.946 164.576

CA15-3 levels 0.290 0.814 0.556 1.192

AP levels 0.212 1.575 0.771 3.215

*Cannot be quantified as all patients in the group responding to treatment have low levels of cfDNA. No patients with high levels of cfDNA responding
to treatment
**Multivariate analysis represent the combination and analysis of all biomarkers (CTC count, cfDNA yield, CA15-3 levels and AP levels) together, as a joint analysis,
to explore the possible interactions between them and how this interactions affects their effect on the clinical variables under study

Table 3 Logistic regression analysis between stratified clinical parameter (response to treatment) and stratified biomarkers, showing
the p value, odds ratio and the 95% confidence interval for this odds ratio
Categorical variable
to analyse

Variable p
value

Odds
ratio

95% CI for OR Type of
analysis

Type of variable

Lower Upper

Response (RECIST 3 categories) vs

Responding CTC threshold Reference category Univariate Stratified biomarker

Stable disease 0.256 2.484 0.516 11.955

Progressive disease 0.007 7.966 1.783 35.587

Responding cfDNA threshold *Cannot be quantified Univariate Stratified biomarker

Stable disease

Progressive disease

Responding CA15-3 threshold Reference category Univariate Stratified biomarker

Stable disease 0.007 0.265 0.101 0.695

Progressive disease 0.977 1.014 0.382 2.694

Responding AP threshold Reference category Univariate Stratified biomarker

Stable disease 0.635 1.485 0.29 7.597

Progressive disease 0.01 7.233 1.616 32.373

*Cannot be quantified as all patients in the group responding to treatment have low levels of cfDNA. No patients with high levels of cfDNA responding
to treatment
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samples needed for the study. To perform the analysis, we
used the presence/absence of CTC counts against the sta-
tus (alive/deceased) of 36 patients included in this prelim-
inary study for whom tumour volume data was available.
The effect size was calculated according to the means of
the population and the pooled standard deviation of those
means, which is the square root of the average of the two
standard deviations. A total of 20 patients (10 patients in
each group) are needed to achieve 80% power at two-
sided 5% significance level; however, in order to maximize
the effect and precision of the results of our study and in
order to capture the full interaction between all the bio-
markers and clinical parameters included, we opted to
analyse all patients recruited over a fixed time period, be-
tween February 2012 and July 2016, which increased the
number of patients to 194.
In this pilot study over the subset of 36 patients, there

was no association of the biomarkers with tumour bulk,
either by the total tumour volume or the number of
metastatic sites. Logistic regression analysis showed that
none of the biomarkers, as categorical variables or as

continuous variables using a univariate or multivariate
approach, nor response by RECIST criteria was associ-
ated to tumour bulk (Additional file 3).
Concerning the total cohort of 194 patients, the me-

dian patient age was 59.5 years (ranges from 29 to 89;
IQR = 20) and patients were from a range of breast can-
cer sub-types as determined by ER, PR and HER2 status.
Of the whole cohort, 95 (49.0%) patients were undergo-
ing endocrine treatment, 49 (25.3%) were receiving on
chemotherapy, 18 (9.3%) were on HER2-targeted ther-
apy, and 32 (16.5%) were off treatment at the time of
blood sample (Table 1). Disease response data was ob-
tained for all 194 patients using RECIST criteria [27]
(Table 1; Additional file 4). There were 30 (15.5%) pa-
tients showing a complete or partial response, 73
(37.6%) patients with stable disease and 91 patients
(46.9%) with progressive disease.

Blood biomarkers
Serum CA15-3 levels were elevated (≥ 32 U/ml) in 127
patients (65.5%) (70 [55.1%] progressing, 34 [26.8%] with

Fig. 2 ROC curve analysis to determinate the power of discrimination of the biomarkers between different patient response. Univariate approach
for (A) CTC counts (AUC = 0.585; sensitivity = 47.6%; specificity = 63.3%), B cfDNA yield (AUC = 0.593; sensitivity = 59.8%; specificity = 46.7%), C
CA15-3 levels (AUC = 0.491; sensitivity = 54.9%; specificity = 46.7%) and D AP levels (AUC = 0.573, sensitivity = 68.3%, specificity = 46.7%)
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a stable disease and 23 [18.1%] responding), AP was
elevated (≥ 130 IU/L) in 40 patients (20.6%) (31 pro-
gressing [77.5%], 7 [17.5%] with a stable disease and 2
[5.0%] responding) and both markers were elevated in
38 (19.6%) patients (29 progressing [76.3%], 7 [18.4%]
with a stable disease and 2 [5.3%] responding) (Add-
itional file 4) at the time of blood sampling. Levels of
CA15-3 and AP were significantly correlated (p value
< 0.0001; Table 2), confirming previous reports [6, 21,
28]. This correlation was confirmed by linear regres-
sion analysis (p value < 0.0001; Additional file 5) and
logistic regression analysis, where CA15-3 values were
associated with AP values, and vice versa (p value <
0.0001, OR = 13.876, CI = 3.231–59.597; Additional
files 6 and 7).
Eighty-nine of 194 patients (45.9%) had at least one

EpCAM+-positive CTC per 7.5 ml blood analysed
(range 1–6848) and 46 patients (23.7%) had ≥ 5 CTCs
per 7.5 ml blood (defined as a high CTC count) [7]
(33 progressing [71.7%], 11 [23.9%] with a stable dis-
ease and 2 [4.4%] responding). The median plasma

cfDNA concentration was 0.112 ng/μl (IQR = 0.095;
range 0.003 to 5.46 ng/μl), and 44 patients (22.7%)
had high levels of cfDNA in plasma (≥ 0.306 ng/μ) (33
progressing [75.0%], 11 [25.0%] with stable disease).
None of the patients with high cfDNA levels were
responding to treatment at the time of blood sam-
pling (Table 1; Additional file 4). The number of
CTCs detected correlated positively with the total
cfDNA level (p value < 0.0001), as reported previously
[21] (Table 2). This correlation was confirmed by lo-
gistic regression analysis, where high CTC counts
were associated with cfDNA overall levels (p value =
0.003, OR = 2.140, CI = 1.305-3.510 and p value =
0.007, OR = 2.028, CI = 1.212–3.394; univariate and
multivariate analysis; Additional file 6) and where
high CTC counts were associated with high cfDNA
levels, and vice versa (p value < 0.0001, OR = 8.083,
CI = 3.803–17.180; Table 3). All 4 blood biomarkers
included in the study were significantly correlated
(Table 2), confirmed by regression analysis (Add-
itional files 6 and 7).

Fig. 3 Kaplan–Meier estimates of probability of overall survival in patients with metastatic breast cancer. Comparison between patients with
higher/lower A circulating tumour cells (p < 0.0001, chi-square = 26.372, hazard ratio = 2.870, 95% CI for HR = 1.876–4.392), B circulating free DNA
(p < 0.0001, chi-square = 14.701; hazard ratio = 2.296, 95% CI for HR = 1.476–3.570), C CA15-3 (p < 0.0001, chi-square = 18.006; hazard ratio = 2.876,
95% CI for HR = 1.717–4.816) and D AP (p < 0.0001, chi-square = 28.710; hazard ratio = 3.063, 95% CI for HR = 1.982–4.732). p value obtained by the
log-rank test. Hazard ratio and 95% CI obtained by Cox proportional-hazards regression analysis
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Comparison of biomarkers with molecular subtype and
response to treatment
Based on data from the cohort, we also categorised each
biomarker according to high and low cut-off points/
thresholds [7, 14, 23–25]. We then compared the four
biomarkers against various clinical parameters using
both the threshold values and using each biomarker as a
continuous variable (Additional files 8 and 9).
Regarding breast cancer molecular subtypes, analysis

of each biomarker showed few significant results regard-
ing hormone receptor (ER/PR) or HER2 status, or type
of therapy administered. When using categorized vari-
ables, CTCs and CA15-3 higher values were associated
with HER2-negative status (p value = 0.048, OR = 0.284,
CI = 0.082–0.989; p value = 0.003, OR = 0.311, CI =
0.145–0.670) and higher CA15-3 was associated with pa-
tients receiving chemotherapy treatment. Results as con-
tinuous variables showed CA15-3 was associated with
ER and PR status (p value = 0.036, OR = 16.416, CI =
1.204–223.876; p value = 0.015, OR = 5.511, CI = 1.394–
21.792), as well as the use of chemotherapy treatment (p
value = 0.027, OR = 1.495, CI = 1.046–2.136) by univari-
ate and multivariate analysis. Lastly, levels of cfDNA and
AP were associated with patients receiving HER2 ther-
apy (p value = 0.028, OR = 2.024, CI = 1.079–3.794; p
value = 0.048, OR = 1.696, CI = 1.006–2.860) by multi-
variate analysis (Additional files 8 and 9).

According to RECIST criteria, patient response to
treatment was classified as either complete or partial re-
sponse, stable disease or progressive disease. To analyse
the relationship with all four biomarkers, we compared
the different categories against each biomarker as cat-
egorical variables (Table 3). Results showed that high
CTC counts and high AP levels are predictors of pro-
gressive disease (p value = 0.007, OR = 7.996, CI = 1.783–
35.587 and p value = 0.01, OR = 7.233, CI = 1.616–
32.373, respectively), while CA15-3 is only associated
with patients with a stable disease (p value = 0.007, OR =
0.265, CI = 0.101–0.695). It was not possible to quantify
the effect of low/high levels of cfDNA because none of
the 44 patients with higher levels of cfDNA were
responding to treatment as all had either stable or pro-
gressive disease. We therefore decided not to use this re-
sponse stratification to draw any conclusions.
To quantify accurately the effect of all biomarkers as a

response predictor, we opted to group the response into
two categories only. For that task, there were two differ-
ent approaches: group categories by disease status (pro-
gressing vs non-progressing disease) or focus the matter
into the prediction of treatment response (responding vs
non-responding to treatment). Based on clinical advice,
we decided that assessing the efficiency of the treatment
(responders vs non-responders) would be most useful in
the follow-up of patients. Therefore, each biomarker was

Table 5 Overall survival analysis of metastatic breast cancer patients, showing the p value, hazard ratio and the 95% confidence
interval for this hazard ratio. Stratified or normalized continuous biomarkers used as variables. Univariate and multivariate analysis

Variable p value Hazard
ratio

95% CI for HR Type of
analysis

Type of variable

Lower Upper

Overall survival analysis

CTC threshold < 0.0001 2.870 1.876 4.392 Univariate Stratified biomarker

cfDNA threshold < 0.0001 2.296 1.476 3.570

CA15-3 threshold < 0.0001 2.876 1.717 4.816

AP threshold < 0.0001 3.063 1.982 4.732

CTC threshold 0.162 1.447 0.862 2.430 *Multivariate

cfDNA threshold 0.034 1.684 1.041 2.726

CA15-3 threshold 0.017 1.973 1.130 3.446

AP threshold 0.006 1.996 1.219 3.268

CTC count 0.003 1.213 1.068 1.376 Univariate Normalized continuous biomarker

cfDNA yield 0.016 1.216 1.037 1.427

CA15-3 levels 0.001 1.278 1.110 1.472

AP levels < 0.0001 1.611 1.365 1.902

CTC count 0.001 1.243 1.088 1.421 *Multivariate

cfDNA yield 0.024 1.199 1.024 1.405

CA15-3 levels 0.168 1.120 0.953 1.315

AP levels < 0.0001 1.565 1.307 1.874

*Multivariate analysis represent the combination and analysis of all biomarkers (CTC count, cfDNA yield, CA15-3 levels and AP levels) together, as a joint analysis,
to explore the possible interactions between them and how this interactions affects their effect on the clinical variables under study

Fernandez-Garcia et al. Breast Cancer Research          (2019) 21:149 Page 8 of 13



compared as a categorical and continuous variable
against response to treatment (Table 4).
The analysis of the 4 biomarkers as continuous vari-

ables showed cfDNA levels as the sole predictor for
treatment response, establishing a clear separation be-
tween responding and non-responding patients, either
by univariate (p value = 0.035, OR = 15.917) or multivari-
ate analysis (p value = 0.055*, OR = 12.481; *borderline
value) (Table 4).

ROC curve analysis (Fig. 2) showed similar results for
cfDNA yield, CTC counts and AP levels (AUC of 0.593,
0.585 and 0.573, respectively), whereas CA15-3 had a
lower AUC (0.491). This suggests that CA15-3 was the
poorest biomarker to discriminate patients according to
their response to treatment. Although the AUC is mod-
est, the cfDNA discrimination power is still 10% higher
than CA15-3, which is one of the currently used markers
in routine clinical practice. Concerning sensitivity and
specificity analysis, AP levels had the highest sensitivity
(68.3%) followed by cfDNA (59.8%), CA15-3 (54.9%) and
CTC (47.6%), while CTC counts showed highest specifi-
city (63.3%) followed by cfDNA, CA15-3 and AP, all
with the same value (46.7%).
We interrogated the possible relationship between bio-

markers and the presence/absence of any line of treat-
ment. Results were not significant for any of the
biomarkers (data not shown).

Comparison of biomarkers with patient survival
Stratification of patients according to the different thresh-
old values for each biomarker demonstrated, as expected,
that higher counts/values of all the biomarkers were sig-
nificantly associated with poorer overall survival (OS)
(Fig. 3; Table 5). A strong relationship was observed be-
tween higher counts/levels of CTC (p value < 0.0001,
HR = 2.870, CI = 1.876–4.392), cfDNA (p value < 0.0001,
HR = 2.296, CI = 1.476–3.570), CA15-3 (p value < 0.0001,
HR = 2.876, CI = 1.717–4.816) and AP (p value < 0.0001,
HR = 3.063, CI = 1.982–4.732), with a poorer outcome of
the metastatic breast cancer patients included in the study.
However, when introducing the multivariate analysis ap-
proach, CTC fails as prognostic factors.
We also compared the combined effect of cfDNA

levels and CTC counts and CA15-3 and AP levels, with
OS (Fig. 4; Additional file 10). Overall survival was im-
proved (median survival > 59months) when the CTC
counts were low (< 5 CTCs/7.5 ml blood) regardless of
cfDNA levels. However, when CTC counts were high
the median survival was significantly affected by cfDNA
levels, being 20 months when cfDNA levels were low (p
value = 0.008, HR = 2.232, CI = 1.232–4.042) and just 6
months when cfDNA levels were high (p value < 0.0001,
HR = 4.047, CI = 2.394–6.841). High levels of CA15-3
also significantly affected the median overall survival, re-
ducing the median survival time from > 59months to 31
months when AP levels were low or 12 months when
AP levels were high. However, combined analysis of
CTC counts and cfDNA levels showed the largest effect
on the overall survival of patients.
Using a Cox regression model to analyse all bio-

markers as continuous variables, we observe that all four
biomarkers were significantly associated with patients
outcome by univariate analysis; however, when

Fig. 4 Kaplan–Meier estimates of probability of overall survival in
patients with metastatic breast cancer. Joint analysis of A circulating
tumour cells and circulating free DNA (p< 0.0001, chi-square = 33.718;
hazard ratio for patients with ≥ 5 CTCs and < 0.306 ng/μl, 2.232 with 95%
CI = 1.232–4.042; hazard ratio for patients with < 5 CTCs and ≥ 0.306 ng/
μl, 1.479 with 95% CI = 0.726–3.010; hazard ratio for patients with ≥ 5
CTCs and ≥ 0.306 ng/μl, 4.047 with 95% CI = 2.394–6.841) and B levels of
CA15-3 and AP (p< 0.0001; chi-square = 37.349; hazard ratio for patients
with ≥ 32 U/mL and < 130 IU/L, 2.519 with 95% CI = 1.425–4.453; hazard
ratio for patients with ≥ 32 U/mL and ≥ 130 IU/L, 5.568 with 95% CI =
3.033–10.223). Group with < 32 U/mL and ≥ 130 IU/L omitted in Fig. 5b
because the low number of patients, and included into group with ≥ 32
U/mL and ≥ 130 IU/L. p value obtained by the log-rank test. Hazard ratio
and 95% CI obtained by Cox proportional-hazards regression analysis
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introducing multivariate analysis, only cfDNA levels (p
value = 0.024, HR = 1.199, CI = 1.024–1.405), CTC
counts (p value = 0.001, HR = 1.243, CI = 1.088–1.421)
and AP levels (p value < 0.0001, HR = 1.565, CI = 1.307–
1.874), but not CA15-3, were able to predict OS
(Table 5).
Stratification of patients according to the threshold

values also showed as expected that higher counts/values
of all the biomarkers were significantly associated with
poorer progression-free survival (PFS) by univariate ana-
lysis; however, none of them have significant results
when using a multivariate approach (Fig. 5, Table 6).
The analysis of all biomarkers as continuous variables
showed that total cfDNA levels were the sole predictor
of PFS by multivariate analysis (p value = 0.042, HR =
1.193, CI = 1.007–1.415) (Table 6). CTC counts and AP
levels only had an effect as predictors in the univariate
model, while CA15-3 levels did not have any effect.

Discussion
Many studies have shown that only approximately 50%
of patients with MBC have high CTC counts or elevated

CA15-3 [5, 6, 29]. Hence, many MBC patients do not
have an acceptable blood marker that allows the clin-
ician to monitor the outcome of therapy without re-
course to expensive imaging. Further, exome sequencing
of the tumour, although offering a personalised approach
to mutation profiling through ctDNA [30], has limita-
tions since progression after therapy is often followed by
the emergence of clones expressing other mutations.
CA15-3 and AP are the two routine biomarkers cur-

rently used in the clinic. However, as neither appears to
have a great ability to predict response to treatment, re-
lapse or overall survival, in this study, we tried to com-
pare these biomarkers with the newer biomarkers
available (cfDNA and CTCs). Although the initial ana-
lysis of all four biomarkers showed that their ability to
discriminate response to treatment is not great, based
on sensitivity and specificity of each biomarker, an over-
all analysis of the area under the curve (AUC) by ROC
curve analysis showed that cfDNA discriminatory power
was 10% higher than CA15-3. This is, at least, a starting
point to consider whether the markers we are using cur-
rently in the clinic are the best available.

Fig. 5 Kaplan–Meier estimates of probability of progression-free survival in patients with metastatic breast cancer. Comparison between patients
with higher/lower A circulating tumour cells (p = 0.007; chi-square = 7.360; hazard ratio = 1.621; 95% CI for HR = 1.102-2.384), B circulating free
DNA (p = 0.014; chi-square = 6.084; hazard ratio = 1.555; 95% CI for HR = 1.055–2.292), C CA15-3 (p = 0.006; chi-square = 7.689; hazard ratio = 1.607;
95% CI for HR = 1.113–2.319) and D AP (p = 0.019; chi-square = 5.494; hazard ratio = 1.556; 95% CI for HR = 1.034–2.340). p value obtained by the
log-rank test. Hazard ratio and 95% CI obtained by Cox proportional-hazards regression analysis
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The results of this study indicate that in patients with
MBC, both the amount of total cfDNA and the number
of EpCAM+ CTCs in patient blood during the treatment
period, are reflective of disease response and are indica-
tors of overall survival, and importantly, cfDNA levels
are the best predictor of disease response and PFS.
Meanwhile, the conventional biomarker CA15-3 failed
as a predictor of response and survival (OS and PFS),
when analysed as a continuous variable. Overall, both
CTC counts and cfDNA levels were associated with clin-
ical outcomes in patients with MBC both individually
and jointly, providing independent validation to a recent
study [10].
Whilst we have shown that higher CTC counts and

cfDNA levels are individually predictive and prognostic
in patients with MBC, analysis of both, as a paired test,
provides additional prognostic information. Overall sur-
vival analysis in MBC patients based on CTC count
alone showed a median survival > 59months for patients
with 0–4 CTCs/7.5 ml blood, compared with only 10
months for those with ≥ 5 CTCs/7.5 ml blood (Fig. 3).
However, when patients have a CTC count ≥ 5 CTCs/
7.5 ml blood, there was an increase in the median sur-
vival time when the patient’s levels of cfDNA are low (<
0.306 ng/μl) and a decrease when the levels of cfDNA
are high (≥ 306 ng/μl) (Fig. 4). These results suggest that

analysis of both CTC count and cfDNA level together
may provide additional prognostic information and allow
further stratification of patients with high CTC counts.
One limitation of the current approach is the inability
to detect CTCs in many patients even in the meta-
static setting, and secondly that the majority of clin-
ical service labs may not have access to a CTC
platform, we therefore suggest that cfDNA measure-
ment potentially represents an easier and less expen-
sive biomarker than CTC counts in patients with
MBC. Whilst our approach relies on detection of
cfDNA levels rather than more specific mutation pro-
filing through ctDNA, cfDNA measurement is a sim-
ple and inexpensive test that could be set up as a
routine test and done as an adjunct to radiological as-
sessment. Importantly, the cost per test is in the tens
of dollars rather than the hundreds of dollars re-
quired currently for either CTC analysis or ctDNA
profiling. Moreover, cfDNA measurement can be
done more frequently than imaging through follow-up
blood sampling to track disease response in real-time
and alert clinicians as to when a change of treatment
is needed. One other limitation to our study is that
due to the high cost of CTC analysis, we analysed a
single blood sample only from each patient; therefore,
we cannot comment on dynamic responses over time.

Table 6 Progression-free survival analysis of metastatic breast cancer patients, showing the p value, hazard ratio and the 95%
confidence interval for this hazard ratio. Stratified or normalized continuous biomarkers used as variables. Univariate and multivariate
analysis

Variable p
value

Hazard
ratio

95% CI for HR Type of
analysis

Type of variable

Lower Upper

Progression-free survival analysis

CTC threshold 0.014 1.621 1.102 2.384 Univariate Stratified biomarker

cfDNA threshold 0.026 1.555 1.055 2.292

CA15-3 threshold 0.011 1.607 1.113 2.319

AP threshold 0.034 1.556 1.034 2.340

CTC threshold 0.623 1.130 0.694 1.839 *Multivariate

cfDNA threshold 0.171 0.731 0.467 1.145

CA15-3 threshold 0.072 1.451 0.967 2.176

AP threshold 0.461 1.187 0.753 1.872

CTC count 0.025 3.508 1.172 10.499 Univariate Normalized continuous biomarker

cfDNA yield 0.013 1.233 1.045 1.455

CA15-3 levels 0.066 1.173 0.990 1.389

AP levels 0.037 1.220 1.012 1.471

CTC count 0.184 2.401 0.660 8.738 *Multivariate

cfDNA yield 0.042 1.193 1.007 1.415

CA15-3 levels 0.311 1.105 0.911 1.339

AP levels 0.236 1.140 0.918 1.415

*Multivariate analysis represent the combination and analysis of all biomarkers (CTC count, cfDNA yield, CA15-3 levels and AP levels) together, as a joint analysis,
to explore the possible interactions between them and how this interactions affects their effect on the clinical variables under study
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Since we began this study in 2012, much research has
focussed on characterising circulating tumour DNA
(ctDNA), with the aim tracking somatic mutations with
disease response. These studies have suggested that
levels of ctDNA may be predictive of disease progres-
sion, overall survival and progression-free survival in dif-
ferent metastatic breast cancer patient populations, but
these have not compared the results with other blood
tests reflecting outcome. We explored the concordance
between cfDNA and ctDNA levels in a previous study
and showed that rising ctDNA is generally reflected by
rising total cfDNA levels [19]. Some studies have re-
ported that the dynamics of ctDNA show a better per-
formance, when compared to the commonly assessed
tumour protein biomarker CA15-3, in correlating with
tumour burden, and provide a very early indication of
treatment response [14, 31, 32]. In support of this, the
results of this study indicate that simple measurement of
total cfDNA levels is a good predictor of response, over-
all survival and progression-free survival in patients with
metastatic breast cancer suggesting potential clinical ap-
plication of a cheap and simple blood-based monitoring
test.

Conclusion
The results of this study indicate that in patients with
MBC, both the amount of total cfDNA and the number
of EpCAM+ CTCs in patient blood during the treatment
period, are reflective of disease response and are indica-
tors of overall survival. Importantly, cfDNA levels are
the best predictor of disease response and PFS; however,
analysis of both cfDNA and CTC counts as a paired test,
provides additional prognostic information and allows
further stratification of patients. In conclusion, the re-
sults of this study indicate that simple measurement of
total cfDNA levels is a good predictor of response, over-
all survival and progression-free survival in patients with
metastatic breast cancer suggesting potential clinical ap-
plication of a cheap and simple blood-based monitoring
test.
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