9 research outputs found

    Violacein/poly(ε-caprolactone)/chitosan Nanoparticles Against Bovine Mastistis: Antibacterial And Ecotoxicity Evaluation

    No full text
    The nanocarrier was synthesized by nanoprecipitation, using poly(ε-caprolactone) (PCL) as polymer, Tween 80 as surfactant and the biopolymer chitosan (CS) as a charge modification agent. Charge, size and morphology were analyzed by zeta potential, photo correlation spectroscopy (PCS), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Bactericidal assays were carried out using a resistant strain of Staphylococcus aureus, and the acute ecotoxicity tests were performed with Daphnia similis. The nanoparticle without CS (PCLnp) exhibited an average size of 200 nm and zeta potential of -4.28 mV, while the nanoparticle with 0.04% (w/v) of CS (CS-PCLnp) had 250 nm and +21.3 mV. Both were stables for at least 30 days. 200 μg mL-1 violacein was encapsulated in CS-PCLnp, which was dissolved in the polymer matrix, a shown by DSC analysis. The minimal inhibitory concentration against S. aureus of CS-PCLnp-vio was 25 μmol L -1, while for free violacein it was > 25 μmol L-1. Nanoparticles exhibited an EC50 between 0.3-1.1 μmol L-1 with Daphnia, while free violacein was around 3.3-5.0 μmol L-1. Thus, it was possible to control the charge of the nanoparticles, without extreme changes in size and that it is possible also to encapsulate a powerful antibactericidal compound such as violacein in nanoparticle. © IOP Publishing Ltd 2013.4291Schoroeder, J.W., (2010) Extension Service, , http://www.ag.ndsu.edu/, AS-1129Pereira, U.P., Oliveira, D.G.S., Mesquita, L.R., Costa, G.M., Pereira, L.J., (2011) Rev. Microbiol., 148, p. 117. , 0001-3714Teeranachaideekul, V., Souto, E.B., Junyaprasert, V.B., Müller, R.H., (2007) Int. Symp. Control. Rel. Bioact. Mater., 34, p. 1956Mazzarino, L., Travelet, C., Ortega-Murillo, S., Otsuka, I., Pignot-Paintrand, I., Lemos-Senna, E., Borsali, R., (2012) J. Colloid. Interface Sci., 370 (1), p. 58. , 10.1016/j.jcis.2011.12.063 0021-9797Torchilin, V.P., (2007) Pharmaceut. Res., 24 (1), p. 1. , 10.1007/s11095-006-9132-0 0724-8741He, W., Tan, Y., Tian, Z., Chen, L., Hu, F., Wu, W., (2011) Int. J. Nanomedicine, 6, p. 521Müller, R.H., Peterson, R.D., Hommoss, A., Pardeike, J., (2007) Adv. Drug Deliver. Rev., 59 (6), p. 522. , 10.1016/j.addr.2007.04.012 0169-409XHuynh, L., Neale, C., Pomès, R., Allen, C., (2012) Nanomed. Nanotech. Biol. Med., 8 (1), p. 20. , 10.1016/j.nano.2011.05.006 1549-9634Jiang, H.T., Wang, T., Wang, L., Sun, C., Jiang, T., Cheng, G., Wang, S., (2012) Microp. Mesopor. Mater., 153, p. 124. , 10.1016/j.micromeso.2011.12.013 1387-1811Rao, J.P., Geckeler, K.E., (2011) Prog. Polym. Sci., 36 (7), p. 887. , 10.1016/j.progpolymsci.2011.01.001 0079-6700Dash, T.K., Konkimalla, V.B., (2012) J. Control. Release, 158 (1), p. 15. , 10.1016/j.jconrel.2011.09.064 0168-3659Cazoto, L.L., Martins, D., Ribeiro, M.G., Durán, N., Nagazato, G., (2011) J. Antibiot., 64 (5), p. 395. , 10.1038/ja.2011.13 0021-8820Durán, M., Faljoni-Alario, A., Durán, N., (2010) Folia Microbiol., 55 (6), p. 535. , 10.1007/s12223-010-0088-4 0015-5632Martins, D., Costa, F.T.M., Brocchi, M., Durán, N., (2011) J. Nanopart. Res., 13 (1), p. 355. , 10.1007/s11051-010-0037-9 1388-0764Durán, M., Ponezi, A.N., Faljoni-Alario, A., Teixeira, M.F.S., Justo, G.Z., Durán, N., (2012) Med. Chem. Res., 21 (7), p. 1524. , 10.1007/s00044-011-9654-9 1054-2523Govender, T., Stolnik, S., Garnett, M.C., Illum, L., Davis, S.S., (1999) J. Control. Release, 57 (2), p. 171. , 10.1016/S0168-3659(98)00116-3 0168-3659Cabral, K.G., Lammler, C., Zschock, M., Langoni, H., De, S.M., Victoria, C., Da Silva, A., (2004) Can. J. Microbiol., 50 (11), p. 901. , 10.1139/w04-082 0008-4166Radostits, O.M., Gay, C.C., Hinchcliff, K.W., (2007) Veterinary Medicine: A Textbook of the Diseases at Cattle, Horses, Sheep, Pigs and GoatsSchalm, O.W., Noolander, D.O., (1957) J. Am. Vet. Med. Assoc., 139, p. 199. , 0003-1488(2011) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, , CLSI-Clinical Laboratory Standards Institute(2004) Daphnia Sp. Acute Immobilisation Test. Organisation for Economic Co-operation Development-Guideline for Testing Chem.s, 202, p. 12. , OECDHamilton, M.A., Russo, R.C., Thurfton, R.B., (1977) Sci. Technol., 11 (7), p. 714. , 10.1021/es60130a004 0013-936XQuemeneur, F., Rinaudo, M., Pepin-Donat, B., (2008) Biomacromolecules, 9 (1), p. 396. , 10.1021/bm700943j 1525-7797http://www.malvern.co.uk/, Zetasizer Nano series technical note Zeta potential an introduction in 30 minutes MRK654-01Mundargi, R.C., Srirangarajan, S., Agnihotri, S.A., Patil, S.A., Ravindra, S., Setty, S.B., Aminabhavi, T.M., (2007) J. Control. Release, 119 (1), p. 59. , 10.1016/j.jconrel.2007.01.008 0168-365

    Avian Extraintestinal Escherichia Coli Exhibits Enterotoxigenic-like Activity In The In Vivo Rabbit Ligated Ileal Loop Assay

    No full text
    Avian pathogenic Escherichia coli (APEC) strains harbor a number of virulence genes and cause extraintestinal diseases, such as septicemia, swollen-head syndrome, salpingitis, and omphalitis in poultry. APEC strains are not known to cause intestinal diseases. Herein, for the first time, it is reported that APEC strains were able to induce an enterotoxigenic-like effect in rabbit ligated ileal loops. Strain SEPT362 caused cell detachment of the intestinal villi, which also showed a flattened and wilted appearance, but the integrity of the tight junctions was maintained. Additionally, this strain did not adhere to enterocytes in vivo, although adhesin encoding genes (fimH, csgA, lpfA2-3, and ECP) were present while other lpfA types, sfa, afa, papC, and ral genes were not. This enterotoxigenic-like activity was conserved after thermal treatment of the supernatant at 65°C but not at 100°C. Moreover, experiments based on filtering with different molecular weight cut-off (MWCO) pore sizes demonstrated that the component associated with the observed biological effect has a molecular weight >100 kDa. Blast search and polymerase chain reaction assays for known E. coli virulence factors showed that strain SEPT362 harbors the gene encoding for the toxin EAST-1 and the serine protease autotransporter (SPATE) Tsh, but is negative for genes encoding for the toxins LT-I, STh, STp, Stx1, Stx2, CNF-1, CNF-2, CDT and the SPATEs Sat, Pic, Vat, SigA, SepA, EatA, EspP, or EspC. A cloned copy of the tsh gene in E. coli K-12 was also tested and was shown to have an enterotoxic effect. These results suggest that APEC might induce fluid accumulation in the rabbit gut. The Tsh autotransporter seems to be one of the factors associated with this phenotype. © Copyright 2014, Mary Ann Liebert, Inc. 2014.116484489Adlerberth, I., Hanson, L., Svanborg, C., Svennerholm, A., Nordgren, S., Wold, A., Adhesins of Escherichia coli associated with extra-intestinal pathogenicity confer binding to colonic epithelial cells (1995) Microb Pathog, 18, pp. 373-385Bauchart, P., Germon, P., Brée, A., Oswald, E., Hacker, J., Dobrindt, U., Pathogenomic comparison of human extraintestinal and avian pathogenic Escherichia coli-Search for factors involved in host specificity or zoonotic potential (2010) Microb Pa-thog, 49, pp. 105-115Bélanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., Dozois, C.M., Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E coli (2011) FEMS Immunol Med Microbiol, 62, pp. 1-10Blanco, J.E., Blanco, M., Mora, A., Blanco, J., Production of toxins (enterotoxins, verotoxins, and necrotoxins) and colicins by Escherichia coli strains isolated from septicemic and healthy chickens: Relationship with in vivo pathogenicity (1997) J Clin Microbiol, 35, pp. 2953-2957Borges, C.A., Beraldo, L.G., Maluta, R.P., Shiga toxigenic and atypical enteropathogenic Escherichia coli in the feces and carcasses of slaughtered pigs (2012) Foodborne Pathog Dis, 9, pp. 1119-1125De Pace, F., Boldrin De Paiva, J., Nakazato, G., Characterization of IcmF of the type VI secretion system in an avian pathogenic Escherichia coli (APEC) strain (2011) Microbiology, 157, pp. 2954-2962Dziva, F., Stevens, M., Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts (2008) Avian Pathol, 37, pp. 355-366Matsuda, K., Chaudhari, A.A., Lee, J.H., Avian colibacillosis caused by an intestinal pathogenic Escherichia coli isolate from calf diarrhea (2010) Res Vet Sci, 89, pp. 150-152Mellata, M., Human and avian extraintestinal pathogenic Es-cherichia coli: Infections, zoonotic risks, and antibiotic resistance trends (2013) Foodborne Pathog Dis, 10, pp. 916-932Ménard, L.-P., Lussier, J.G., Lépine, F., De Sousa, C.P., Dubreuil, J.D., Expression, purification, and biochemical characterization of enteroaggregative Escherichia coli heat-stable enterotoxin 1 (2004) Protein Expr Purif, 33, pp. 223-231Moulin-Schouleur, M., Répérant, M., Laurent, S., Extra-intestinal pathogenic Escherichia coli strains of avian and human origin: Link between phylogenetic relationships and common virulence patterns (2007) J Clin Microbiol, 45, pp. 3366-3376Navarro-Garcia, F., Gutierrez-Jimenez, J., Garcia-Tovar, C., Castro, L.A., Salazar-Gonzalez, H., Cordova, V., Pic, an autotransporter protein secreted by different pathogens in the En-terobacteriaceae family, is a potent mucus secretagogue (2010) Infect Immun, 78, pp. 4101-4109Olesen, B., Scheutz, F., Andersen, R.L., Enteroaggregative Escherichia coli O78:H10 the cause of an outbreak of urinary tract infection (2012) J Clin Microbiol, 50, pp. 3703-3711Provence, D.L., Curtiss, R., Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Es-cherichia coli strain (1994) Infect Immun, 62, pp. 1369-1380Tcg, R., Maluta, R.P., Parizzi, L.P., Genome sequences of avian pathogenic Escherichia coli strains isolated from Brazilian commercial poultry (2013) Genome Announce, 1, pp. e00110-e00113Russo, T.A., Johnson, J.R., Proposal for a new inclusive designation for extraintestinal pathogenic isolates of Escherichia coli: ExPEC (2000) J Infect Dis, 181, pp. 1753-1754Savarino, S.J., Fasano, A., Robertson, D.C., Levine, M.M., En-teroaggregative Escherichia coli elaborate a heat-stable en-terotoxin demonstrable in an in vitro rabbit intestinal model (1991) J Clin Invest, 87, pp. 1450-1455Schierack, P., Walk, N., Ewers, C., ExPEC-typical virulence-associated genes correlate with successful colonization by intestinal E coli in a small piglet group (2008) Environ Microbiol, 10, pp. 1742-1751Syngkon, A., Elluri, S., Koley, H., Studies on a novel serine protease of a DhapADprtV Vibrio cholerae O1 strain and its role in hemorrhagic response in the rabbit ileal loop model (2010) PLoS ONE, 5. , pii:e13122Mam, V., Tat, G., Ajp, F., Knöbl, T., Servin, A.L., Liévin-Le Moal, V., Two atypical enteropathogenic Escher-ichia coli strains induce the production of secreted and membrane-bound mucins to benefit their own growth at the apical surface of human mucin-secreting intestinal HT29-MTX cells (2010) Infect Immun, 78, pp. 927-93

    Efeito de dietas contendo plasma sanguíneo desidratado sobre características microbiológicas, imunológicas e histológicas de leitões leves ao desmame

    No full text
    Foram avaliados os efeitos do plasma sanguíneo desidratado (PSD) sobre desempenho, perfil imunológico, histológico, microbiológico e peso de órgãos de leitões leves, desmamados aos 21 dias de idade. Foram utilizados 24 leitões, com idade média inicial de 21 dias, em delineamento experimental completamente ao acaso. Os tratamentos foram: T1 - animais pesados ao desmame, sem suplementação com PSD; T2 - animais leves ao desmame, suplementados com 10g/animal/dia de PSD; T3 - animais leves ao desmame, suplementados com 20g/animal/dia de PSD; T4 - animais leves ao desmame, sem suplementação com PSD. A adição de 20g de PSD na dieta melhorou o ganho diário de peso, aumentou o peso (g/kg) do baço e o título de IgA no soro entre 21 e 31 dias de idade. A inclusão de 10g de PSD aumentou o comprimento e a largura do linfonodo ileocólico. A inclusão de PSD traz benefícios aos leitões nos primeiros 10 dias pós-desmame, atuando principalmente nos órgãos linfoides e na mucosa intestinal

    Efeito de dietas contendo plasma sanguíneo desidratado sobre características microbiológicas, imunológicas e histológicas de leitões leves ao desmame Effect of spray-dried plasma diets on microbiological, immunological and histological parameters of light weight weaned pigs

    No full text
    Foram avaliados os efeitos do plasma sanguíneo desidratado (PSD) sobre desempenho, perfil imunológico, histológico, microbiológico e peso de órgãos de leitões leves, desmamados aos 21 dias de idade. Foram utilizados 24 leitões, com idade média inicial de 21 dias, em delineamento experimental completamente ao acaso. Os tratamentos foram: T1 - animais pesados ao desmame, sem suplementação com PSD; T2 - animais leves ao desmame, suplementados com 10g/animal/dia de PSD; T3 - animais leves ao desmame, suplementados com 20g/animal/dia de PSD; T4 - animais leves ao desmame, sem suplementação com PSD. A adição de 20g de PSD na dieta melhorou o ganho diário de peso, aumentou o peso (g/kg) do baço e o título de IgA no soro entre 21 e 31 dias de idade. A inclusão de 10g de PSD aumentou o comprimento e a largura do linfonodo ileocólico. A inclusão de PSD traz benefícios aos leitões nos primeiros 10 dias pós-desmame, atuando principalmente nos órgãos linfoides e na mucosa intestinal.The aim of this experiment was to evaluate the effects of spray-dried plasma (SDP) on the growth performance, immunological, histological and microbiological profile and weight of organs of light weight weaned pigs. The trial was done using 24 pigs with an initial mean age of 21 days in a completely randomized experimental design. The treatments were: T1 - heavy weight weaned pigs, without SDP supplementation; T2 - light weight weaned pigs, supplemented with 10g/animal/day of SDP; T3 - light weight weaned pigs, supplemented with 20g/animal/day of SDP; T4 - light weight weaned pigs, without SDP supplementation. The inclusion of 20g of SDP in the diet improved the weight gain, spleen weight (g/kg) and serum IgA title between 21 and 31 days of age. The inclusion of 10g of SDP in the diet improved the length and width of the ileocolic lymph node. In the first 10 days after weaning, SDP improved the development of lymphoid organs and the protection of the intestinal mucosa
    corecore