15 research outputs found
Adiabatic creation of entangled states by a bichromatic field designed from the topology of the dressed eigenenergies
Preparation of entangled pairs of coupled two-state systems driven by a
bichromatic external field is studied. We use a system of two coupled spin-1/2
that can be translated into a three-state ladder model whose intermediate state
represents the entangled state. We show that this entangled state can be
prepared in a robust way with appropriate fields. Their frequencies and
envelopes are derived from the topological properties of the model.Comment: 10 pages, 9 figure
Generation of Entangled N-Photon States in a Two-Mode Jaynes-Cummings Model
We describe a mathematical solution for the generation of entangled N-photon
states in two field modes. A simple and compact solution is presented for a
two-mode Jaynes-Cummings model by combining the two field modes in a way that
only one of the two resulting quasi-modes enters in the interaction term. The
formalism developed is then applied to calculate various generation
probabilities analytically. We show that entanglement, starting from an initial
field and an atom in one defined state may be obtained in a single step. We
also show that entanglement may be built up in the case of an empty cavity and
excited atoms whose final states are detected, as well as in the case when the
final states of the initially excited atoms are not detected.Comment: v2: 5 pages, RevTeX4, minor text changes + 1 figure added, revised
version to be published in PRA, May 200
Perturbative Formulation and Non-adiabatic Corrections in Adiabatic Quantum Computing Schemes
Adiabatic limit is the presumption of the adiabatic geometric quantum
computation and of the adiabatic quantum algorithm. But in reality, the
variation speed of the Hamiltonian is finite. Here we develop a general
formulation of adiabatic quantum computing, which accurately describes the
evolution of the quantum state in a perturbative way, in which the adiabatic
limit is the zeroth-order approximation. As an application of this formulation,
non-adiabatic correction or error is estimated for several physical
implementations of the adiabatic geometric gates. A quantum computing process
consisting of many adiabatic gate operations is considered, for which the total
non-adiabatic error is found to be about the sum of those of all the gates.
This is a useful constraint on the computational power. The formalism is also
briefly applied to the adiabatic quantum algorithm.Comment: 5 pages, revtex. some references adde
Theory of Quantum Optical Control of Single Spin in a Quantum Dot
We present a theory of quantum optical control of an electron spin in a
single semiconductor quantum dot via spin-flip Raman transitions. We show how
an arbitrary spin rotation may be achieved by virtual excitation of discrete or
continuum trion states. The basic physics issues of the appropriate adiabatic
optical pulses in a static magnetic field to perform the single qubit operation
are addressed
Semiconductor-based Geometrical Quantum Gates
We propose an implementation scheme for holonomic, i.e., geometrical, quantum
information processing based on semiconductor nanostructures. Our quantum
hardware consists of coupled semiconductor macroatoms addressed/controlled by
ultrafast multicolor laser-pulse sequences. More specifically, logical qubits
are encoded in excitonic states with different spin polarizations and
manipulated by adiabatic time-control of the laser amplitudes . The two-qubit
gate is realized in a geometric fashion by exploiting dipole-dipole coupling
between excitons in neighboring quantum dots.Comment: 4 Pages LaTeX, 3 Figures included. To appear in PRB (Rapid Comm.
Cavity QED and quantum information processing with "hot" trapped atoms
We propose a method to implement cavity QED and quantum information
processing in high-Q cavities with a single trapped but non-localized atom. The
system is beyond the Lamb-Dick limit due to the atomic thermal motion. Our
method is based on adiabatic passages, which make the relevant dynamics
insensitive to the randomness of the atom position with an appropriate
interaction configuration. The validity of this method is demonstrated from
both approximate analytical calculations and exact numerical simulations. We
also discuss various applications of this method based on the current
experimental technology.Comment: 14 pages, 8 figures, Revte
Entangled state preparation via dissipation-assisted adiabatic passages
The main obstacle for coherent control of open quantum systems is decoherence
due to different dissipation channels and the inability to precisely control
experimental parameters. To overcome these problems we propose to use
dissipation-assisted adiabatic passages. These are relatively fast processes
where the presence of spontaneous decay rates corrects for errors due to
non-adiabaticity while the system remains in a decoherence-free state and
behaves as predicted for an adiabatic passage. As a concrete example we present
a scheme to entangle atoms by moving them in and out of an optical cavity.Comment: 11 pages, 7 figures, minor changes, accepted for publication in Phys.
Rev.
Holonomic quantum gates: A semiconductor-based implementation
We propose an implementation of holonomic (geometrical) quantum gates by
means of semiconductor nanostructures. Our quantum hardware consists of
semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it
all optical control}). Our logical bits are Coulomb-correlated electron-hole
pairs (excitons) in a four-level scheme selectively addressed by laser pulses
with different polarization. A universal set of single and two-qubit gates is
generated by adiabatic change of the Rabi frequencies of the lasers and by
exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include
Measuring a coherent superposition
Abstract: We propose a simple method for measuring the populations and the relative phase in a coherent superposition of two atomic states. The method is based on coupling the two states to a third common (excited) state by means of two laser pulses, and measuring the total fluorescence from the third state for several choices of the excitation pulses