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Adiabatic limit is the presumption of the adiabatic geometric quantum computation and of the adiabatic

quantum algorithm. But in reality, the variation speed of the Hamiltonian is finite. Here we develop a general

formulation of adiabatic quantum computing, which accurately describes the evolution of the quantum state in

a perturbative way, in which the adiabatic limit is the zeroth-order approximation. As an application of this

formulation, nonadiabatic correction or error is estimated for several physical implementations of the adiabatic

geometric gates. A quantum-computing process consisting of many adiabatic gate operations is considered, for

which the total nonadiabatic error is found to be about the sum of those of all the gates. This is a useful

constraint on the computational power. The formalism is also briefly applied to the adiabatic quantum algo-

rithm.
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Recently a considerable amount of attention has been paid

to the idea of using geometric phases accumulated by an

adiabatically time-dependent Hamiltonian to realize quantum

gates ❅1–3★. Construction of universal gates by geometric

quantum teleportation was studied, with the analysis of er-

rors from imperfect control ❅4★. On the other hand, adiabatic

evolution is also the basis of the so-called adiabatic quantum
algorithms ❅5★, for which the speed and the overall time have
been analyzed ❅6★.

For these quantum-computing schemes to work, it was
supposed that the adiabatic limit is retained. However, in
practice, and particularly in the case of quantum computa-
tion, where the advantage lies in speedup and the operation
time should be shorter than the decoherence time, the evolu-
tion is required to be completed in a finite period of time.
Therefore, it is important to know the full picture of the
evolution of the quantum state and the nonadiabatic correc-
tion, which gives rise to error if the adiabatic limit is neces-
sary for the designed quantum-computing scheme. Here we
develop a general formulation of adiabatic quantum comput-
ing, applicable to the previously proposed quantum-
computing schemes and to any slowly varying Hamiltonian.
As an adiabatic perturbation theory, it accurately describes
the quantum evolution in a perturbative way, in which the
adiabatic limit is the zeroth-order approximation. As an ap-
plication, an examination is made on the nonadiabatic errors
in several previously proposed implementations of the adia-
batic geometric gates. We also investigate the nonadiabatic
error in an entire quantum-computing process consisting of
many adiabatic gates, which has not been considered previ-
ously. Finally we briefly discuss the adiabatic quantum algo-
rithm, noting that such an algorithm can still be implemented
even if the nonadiabatic correction is not vanishingly small.

If the evolution of a time-dependent Hamiltonian is suffi-
ciently slow, the adiabatic theorem tells that in the adiabatic

limit and under such conditions as continuity, noncrossing,
and differentiability, an instantaneous eigenstate at an initial
time evolves to a state close to the corresponding instanta-
neous eigenstate at a later time ❅7★.

In general, using the instantaneous eigenstate ✉❢n(t)✫ ,
one can always expand the state of the system ✉❝(t)✫ as

✉❝� t✁✫✺✭
n

an� t✁✉❢n� t✁✫exp✂ i❤n� t✁✄ , ☎1✆

where ❤n(t)✺✝ i/❭✯0
t En(t)dt is the dynamic phase. Then

the Schrödinger equation i❭❪ t✉❝(t)✫✺H(t)✉❝✫ leads to

❪ tan� t✁✺✝✭
m

am� t✁❫❢n� t ✁✉❪ t❢m� t ✁✫exp✂ i❤m� t✁✝ i❤n� t ✁✄ ,
☎2✆

which together with the initial condition an(0)
❬❫❢n(0) ✉❝(0)✫ , determines ✉❝(t)✫ .

First suppose ✉❝(0)✫ is a nondegenerate eigenstate
✉❢n(0)✫. Then in the adiabatic limit, one obtains ✉❝(t)✫
✬✉❢n(t)✫exp✂i❣n(t)✶i❤n(t)✄, where ❣n(t)✺✯0

t ❫❢n✉❪✞❢n✫dt
✺✯❫❢n✉❪♠❢n✫dx♠ is the geometric or Berry phase ❅8★.

However, when nonadiabatic correction is considered, the
exact state should be the solution of Eq. ☎2✆. For a slowly
varying H(t), using a perturbative approach, one can obtain

U� t✁✉❢n�0✁✫✺exp✂ i❣n� t✁✶i❤n� t✁✄❋ ✉❢n(t)✫

✶❭ ✭
mÞn

✉❢m� t✁✫❫❢m� t✁✉❪ t❢n� t✁✫
Em� t✁✝En� t✁ ●✶➉➉➉ . ☎3✆

In general, as in quantum computing, ✉❝(0)✫
✺✟nan(0) ✉❢n(0)✫ is a superposition of different eigen-
states. Then linearity of quantum evolution implies

✉❝� t✁✫✺✭
n

an�0✁U� t ✁✉❢n�0✁✫ , ☎4✆

where each U(t) ✉❢n(0)✫ is as given in Eq. ☎3✆. Therefore,
an(t)exp✂i❤n(t)✄✺✟m❫❢n(t)✉U(t)✉❢m(0)✫am(0). From Eq. ☎3✆,
one obtains ❫❢n(t) ✉U(t)✉❢n(0)✫✬❫❢n(t)✉U (0)(t)✉❢n(0)✫
✺exp✂i❣n(t)✶i❤n(t)✄, while for n✠m , ❫❢n(t) ✉U(t)✉❢m(0)✫
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✬❫❢n(t)✉U
(1)(t)✉❢m(0)✫✺❭exp❅i❣m(t)✶ i❤m(t)★❫❢n✉❪t❢m✫/❅En(t)

✷Em(t)★. Here U (k) refers to kth order term. Since En(t)
ÞEm(t),❤n(t)Þ❤m(t). If one implements an all-geometric
gate, in which the instantaneous basis states are ✉❢n(t)✫ and
✉❢m(t)✫, the difference between ❤n(t) and ❤m(t) needs to be
cancelled out by using a certain method �1✁.

In the presence of degeneracy of eigenstates, denote the

eigenstates as ✉❢❛n
n (0)✫ , where n labels the energy levels,

while ✂n labels the different eigenstates in the subspace n. As
the generalization of Eq. ⑦3✦, we obtain

U✄ t☎✉❢❛n
n ✄0☎✫✺exp❅ i❤n✄ t☎★ ✉①❛n

n (t)✫

✶❭ ✭
m✆n

✭❜m

✉①❜m
m ✄ t☎✫❫①❜m

m ✄ t☎✉❪ t①❛n
n ✄ t☎✫

Em✄ t☎✷En✄ t☎

✶➉➉➉ , ⑦5✦

with ✉①❛n
n (t)✫✺✝❜nV❛n❜n

n (t)✉❢❜n
n (t)✫ , Vn(t)

✺Pexp✯0
tAn(t)dt, where A❛n❜n

n ❬❫①❜n
n (t)✉❪ t①❛n

n (t)✫ is the

connection in the subspace n. Vn may be called nonabelian
geometric phase or Wilczek-Zee ⑦WZ✦ phase �9✁. In the ze-
roth order, U(t) is block diagonal, each block being a WZ
phase in the subspace of a set of degenerate eigenstates. In
the adiabatic limit, as a unitary transformation, a nonabelian
geometric phase, i.e., the first term in Eq. ⑦5✦, may be used to
realize a quantum gate �2✁.

With the existence of degeneracy of eigenstates, a general
superposition state can be written as

✉❝✄ t☎✫✺✭
n

✭❛n
a❛n
n ✄ t☎✉①❛n

n ✄ t☎✫exp❅ i❤n✄ t☎★ . ⑦6✦

By choosing an appropriate basis for each degenerate sub-
space, the initial state can always be expanded in such a way
that its projection in each degenerate subspace is a single

eigenstate ✉❢❜n
n (0)✫, i.e., ✉❝(0)✫✺✝na❜n

n (0)✉①❜n
n (0)✫, with

✉①❜n
n (0)✫✺✉❢❜n

n (0)✫ . Therefore,

✉❝✄ t☎✫✺✭
n

a❜n
n ✄0☎U✄ t☎✉①❜n

n ✄0☎✫ . ⑦7✦

Thus a❛n
n (t)exp❅i❤n(t)★✺✝m✝❜m❫①❛n

n (t)✉U(t)✉①❜m
m (0)✫a❜m

m (0).

From Eq. ⑦5✦,

❫①❛n
n ✄ t☎✉U✄ t☎✉①❜n

n ✄0 ☎✫✬❫①❛n
n ✄ t☎✉U (0)✄ t☎✉①❜n

n ✄0☎✫

✺exp❅ i❤n✄ t☎★❞❛n❜n,

while for nÞm ,

❫①❛n
n ✄ t☎✉U✄ t☎✉①❜m

m ✄0☎✫

✬❫①❛n
n ✄ t☎✉U (1)✄ t☎✉①❜m

m ✄0☎✫✺❭exp❅ i❤m✄ t☎★

✸❫①❛n
n ✄ t☎✉❪ t①❜m

m ✄ t☎✫/❅En✄ t☎✷Em✄ t☎★.

Through this formulation, it becomes clear that the adia-
batic quantum computing is based on ❫❢n(t)✉U

(0)(t)✉❢n(0)✫
or ❫①❛n

n (t)✉U (0)(t)✉①❜n
n (0)✫, with higher-order terms ne-

glected. Besides, while the previous proposals of adiabatic
geometric gates are based on closed paths, there is nothing in
principle against using open paths as far as the corresponding
geometric phases can be detected �10✁. Another noteworthy
point, which was not pointed out before, is that when the
qubits under a gate operation is entangled with other qubits,
the linearity of quantum evolution guarantees that the gate
operation is still given by Eq. ⑦3✦ or ⑦5✦, where the eigen-
states are those of this concerned gate; one may include in

the coefficients an(0) or a❛n
n (0) the states of the other qubits

projected in the same branch as the eigenstates of the gated
qubits. This is crucial for the possibility that different adia-
batic geometric gates can be networked.

There is a significant difference in the uses of ⑦abelian✦
Berry phase and WZ phase to realize a quantum gate, under
adiabatic limit. For a Berry phase gate, it is necessary to have
d nondegenerate states, where d is the Hilbert space dimen-
sion of the gate. For a WZ phase gate, one intentionally
restricts the gate in a single degenerate eigenspace. A quan-
tum gate based on WZ phase is more advantageous than that
based on Berry phase, on the aspect that for the former, in
the adiabatic limit, the state is always an instantaneous
eigenstate of the Hamiltonian, hence there is no dynamical
phase difference between the basis states, and it is more
stable against environmental perturbation.

The nonadiabatic correction or error at time

t is ❡(t)❬❅U(t)✷U (0)(t)★✉❝(0)✫✺✝k✞1
❵ U (k)(t)✉❝(0)✫

✬U (1)(t)✉❝(0)✫ . The adiabatic limit means ✉❡(T)✉✟1. For
a Berry phase gate, with ✉❝(0)✫✺✝nan(0)✉❢n(0)✫ ,

❡✄ t☎✬✭
n

an✄0☎ ✭
m✆n

❫❢m✄ t☎✉U
(1)✄ t☎✉❢n✄0☎✫✉❢n✄0☎✫. ⑦8✦

For a WZ phase gate geometric gate at En , with ✉❝(0)✫
✺✝❛na❛n(0)✉❢❛n

n (0)✫ ,

❡✄ t☎✬✭❛n
a❛n✄0☎

✸ ✭
m✆n

✭❜m
❫①❜m

m ✄ t☎✉U (1)✄ t☎✉①❛n
n ✄0☎✫✉❢❛n

n ✄0☎✫ . ⑦9✦

Note that the first-order correction at time t is determined
only by eigenvalues, eigenstates, and their time derivatives at
t, hence it is history independent. This simplifies the analysis.
The time derivatives do depend on the details of time depen-
dence. However, since only the path is specified �11✁, with-
out the fine control of the dynamics, numerically it suffices
to obtain the order of magnitude. The first-order correction is
❀❭/❉T , where T is the time duration of the gate operation
and ❉ is the minimum energy gap with other eigenstates. It
is the presumption of ‘‘slow variation’’ or perturbative ap-
proach that ❭ /❉T✱1. The kth-order correction is
❀(❭/❉T)k.

As applications, we now apply the above results to several
physical implementations previously proposed. The first pro-
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posal, based on Berry phase, uses NMR ❅1★. The

Hamiltonian, in the rotating frame, is H(t)✺R(t)➉I,

where R❬(Rx ,Ry ,Rz)✺❭(✈1cos❢,✈1sin❢,✈0✷✈), I

✺ 1
2 (sx ,s y ,s z), ✈0 is proportional to the static magnetic

field in z direction, ✈1 is proportional to the RF magnetic

field in xy plane, ✈ is its angular frequency, and ❢ is its

initial phase. The instantaneous eigenstates is ✉1(t)✫

✺1/❆R�(Rx✷ iRy)/❆R✷Rz✉✧✫✶❆R✷Rz✉✁✫], with eigen-

value R/2, and ✉0(t)✫✺1/❆R�(Rx✷ iRy)/❆R✶Rz✉✧✫

✷❆R✶Rz✉✁✫] with eigenvalue ✷R/2, where R❬✉R✉. From
this, one obtains, for n✺0,1, Unn(0,t)✺exp�i❣n(t)✶i❤n(t)✂.
❤0(t)✺Rt/2,❤1(t)✺✷Rt/2. The Berry phase ❣n(t) is, in the
case of a cycle path C, ❱(C)/2 for n✺0 and ✷❱(C) for
n✺1, where ❱(C) is the solid angel that C subtends at R
✺0. It is straightforward to write down U01(0,t) and
U10(0,t). For a gate operation of a period T, the order of
magnitude of these two matrix elements, and thus the nona-

diabatic correction, is ❭ /RT✺1/✄✈1
2✶(✈0✷✈)2T . The two-

bit gate, of qubits a and b, is effected by addition of the
interaction ❭JIazIbz . For the conditional phases of qubit a,
✈a0 shifted to to ✈a0✶JIbz✺✈a0✻J/2, depending on the
basis state ✉Ibz✫ of b. One can obtain the nonadiabatic cor-
rections in the two subspaces, with the substitution of ✈a0

✻J/2 for ✈0 in R above. For a gate as in Ref. ❅1★, the gaps
are of the order of several hundred Hertz, while T is of the
order of second, hence the nonadiabatic corrections are of the
order of 10☎2.

This method was also applied to a Josephson junction
circuit ❅12★. The effective Hamiltonian is still as that for
NMR, now with R✺�EJcos❛,✷EJsin❛,Ec(1✷2nof f)✂, where
EJ and ❛ are decided by the Josephson couplings of two
junctions, Ec is charging energy, and 2eno f f is the offset
charge. In the charging regime, as used, Ec❃EJ . Thus the
nonadiabatic correction is of the order of

❭ /✄EJ
2✶Ec

2(1✷2no f f)
2T . Hence if 1✷2no f f is not too

small, the adiabatic condition is ❭ /EcT✦1, more relaxed
than previously thought ❅12★.

An implementation of WZ phase gate was proposed
for trapped ions ❅13–15★. The one-bit gates are based
on the Hamiltonian H✺❭✉e✫(✈0❫0✉✶✈1❫1✉✶✈a❫a✉✶h.c.).

One can find that the eigenstates are: ✉❢1
✫✺(✈✉e✫✶✈0

*✉0✫
✶✈1

*✉1✫✶✈a
*✉a✫)/❆2✈ with eigenvalue ❭✈ ,

where ✈✺✄✈0
2✶✈1

2✶✈a
2, ✉❢✆

0
✫✺(✈1✉0✫✷✈a✉1✫)/

❆✉✈0✉
2✶✉✈1✉

2 and ✉❢❜
0
✫✺(✈a✈0

*✉0✫✶✈a✈1
*✉1✫✷(✉✈0✉

2

✶✉✈1✉
2)✉a✫)/(✈❆✉✈0✉

2✶✉✈1✉
2) with eigenvalue 0, and

✉❢☎1
✫✺(✷✈✉e✫✶✈0

*✉0✫✶✈1
*✉1✫✶✈a

*✉a✫)/❆2✈ with ei-

genvalue ✷❭✈ . The WZ phase gates are based on U00, in
terms of our notation. Using the instantaneous eigenstates
and eigenvalues, the nonadiabatic correction is obtained as

✭n✝☎1,1✭ x✝✆ ,❜ax(0)Ux
n0(T) ✉❢x

0(0)✫ , whose order of mag-

nitude is of 1/✈T . The two-bit gate proposed there is only a
Berry phase gate under the Hamiltonian ❅13★ H jk

✺(❤2/❞)�✷✉❱1✉
2s

j1

✞1s
k1

✞1✶✉❱a✉
2s

ja

✞as
ka

✞a✂ , where s
j♠
✞✟

❬e i✞✟✉e✫ j j❫✠✉✶h.c., ❢1✷❢a✺❢/2, using the notations
therein. The eigenstates are ❢1✺(✷✉❱1✉

2e☎ i✞✉11✫
✶✉❱a✉

2✉aa✫✶❆✉❱1✉
4✶✉❱a✉

4✉ee✫)/❆2(✉❱1✉
4✶✉❱a✉

4) with

eigenvalue (❤2/❞)❆✉❱1✉
4✶✉❱a✉

4, ✉❢0
✫✺(✉❱a✉

2✉11✫

✶✉❱1✉
2e i✞✉aa✫)/❆✉❱1✉

4✶✉❱a✉
4 with eigenvalue

0, and ❢☎1✺(✷✉❱1✉
2e☎i✞✉11✫✶✉❱a✉

2✉aa✫

✷❆✉❱1✉
4✶✉❱a✉

4✉ee✫)/❆2( ✉❱1✉
4✶✉❱a✉

4) with eigenvalue

✷(❤2/❞)❆✉❱1✉
4✶✉❱a✉

4. It was proposed to use ✉❢0
✫ to

implement the phase gate. The nonadiabatic correction is of

the order of ❭ /T(❤2/❞)❆✉❱1✉
4✶✉❱a✉

4.

Similar proposals were also made in Josephson junction

charge qubits ❅16,17★. For the Hamiltonian used in Ref. ❅16★,

there is an eigenstate with eigenvalue ❆h2✶✉J1✉
2✶✉J2✉

2,

two degenerate eigenstates with eigenvalue h, two degener-

ate eigenstates with eigenvalue ✷h , which are used to

implement the WZ phase gate, and one ground state with

eigenvalue ❆h2✶✉J1✉
2✶✉J2✉

2, where h✺Ec(1✷2no f f)/2.

Thus the nonadiabatic correction is of the order of

❭ /(❆h2✶✉J1✉
2✶✉J2✉

2✷h)T . In the two-bit implementation,

the eigenvalues are ✷❆✉Jb✉
2✶(2h)2, ✷2h , 0, 2h ,

❆✉Jb✉
2✶(2h)2. The eigenstates with eigenvalue ✷2h are

used as the qubit states. The nonadiabatic correction is of the
order of ❭ /❉T , where ❉ is the smaller one of
❆✉Jb✉

2✶(2h)2✷2h and 2h . Suppose the order of magnitude
of Josephson energy is J. Then if 1✷2no f f is close to 1, the
energy gap is of the order of J2/Ec in the single-bit gate, and
is of the order of J2/4Ec in the two-bit gate. Since Ec❃J , the
energy gap is smaller than J. Hence compared with the case
of ❅12★, the adiabatic condition is harder to meet, i.e., the
nonadiabatic correction is larger. On the other hand, if 1
✷2no f f is tuned to be very small, then the energy gap for the
cases of both ❅16★ and ❅12★ are of the order of the Josephson
energy.

In the one-bit gate in ❅17★, the energy eigenvalues are

❞Ec✶❆(❞Ec)
2✶2J2, 0, which is with twofold degeneracy

and is used to implement the WZ gate, and ❞Ec

✷❆(❞Ec)
2✶J2, where ❞Ec is some charging energy differ-

ence, J2✺✉JL✉
2✶✉JM✉

2✶✉JR✉
2, using the notations there.

Thus the nonadiabatic correction is of the order of ❭ /❉T ,

where ❉ is the smaller one of ✉❞Ec✶❆(❞Ec)
2✶J2✉ and

✉❞Ec✷❆(❞Ec)
2✶J2✉. Hence ❉ is of the order of ❞Ec if

❞Ec✳J , and is of the order of J if ❞Ec✱J . For the two-bit

gate, the three energy eigenvalues are ✄✉JX✉
2✶✉JM

(2)✉2/2, 0,

and ✷✄✉JX✉
2✶✉JM

(2)✉2/2, where the parameters are as defined

there. Hence the nonadiabatic correction is of the order of

2❭ /✄✉JX✉
2✶✉JM

(2)✉2T . For both one-bit and two-bit gates, the

energy gap is at most of the order of Josephson energy.
Therefore, though WZ gate has more advantages over Berry
gate, the nonadiabatic error for ❅16,17★ is larger than that for
❅12★.

A quantum-computing process in a gate array consists of
many gate operations on a large number of qubits, hence a
complete estimation of error must include its scaling with the
number of gate operations. Suppose from time 0 to T, M 1

adiabatic gates, denoted as U j(t), ( j✺1,➉➉➉ ,M 1), are in par-
allel operation, each on a small number of ⑦say, one or two✡
qubits. For 0❁t❁T , the entire quantum computer evolves as

✉❈(t)✫✺U1(t)➉➉➉UM1(t)✉❈(0)✫✺✭ i1☛☛☛ iM1
ir
U1(t)✉❢ i1

1 (0)✫

➉➉➉UM1(t) ✉❢
iM1

M1 (0)✫✉❢ ir

r
✫ , where ✉❢ i j

j
✫ is a basis state of the

qubits acted by the j th gate, r denotes the rest qubits, which
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are not operated by any gate during this period. We know

that U j(t)✉❢ i j

j (0)✫✺U0
j (t)✉❢ i j

j (0)✫✶❡ j(t), where U0
j (t) rep-

resents the adiabatic limit of j th gate, while ❡ j(t)✱1 is its
nonadiabatic correction. The state of the quantum computer
at T is then ✉❈(T)✫✺✉❈0(T)✫✶s(0,T), where ✉❈0(T)✫

✺U0
1(T)➉➉➉U

0

M1(T)✉❈(0)✫ , s(0,T)✬✭
j�1

M1 ❡ j(T) is the

first-order error of the entire quantum computer accumulated
from time 0 to T. Afterwards, during T✱ t✱2T , the quantum
computer is operated in parallel by M 2 gates, labeled
as M 1✶1, . . . ,M 1✶M 2, to which the qubits are allocated
in a way usually different from the period 0✱ t✱T . Using
a derivation similar to the above, it can be

obtained that ✉❈(2T)✫✺U
0

M1✁1
(T)➉➉➉U

0

M1✁M2(T)✉❈(T)✫

✶s(T ,2T), where s(T ,2T)✬✭
j�M1✁1

M1✁M2 ❡ j(T) is the error of

the entire quantum computer accumulated from T

to 2T . Therefore, ✉❈(2T)✫✺U
0

M1✁M2(T)➉➉➉U
0

M1✁1
(T)➉➉➉

U
0

M1(T)➉➉➉U0
1
✉❈(0)✫✶s(0,2T), where s(0,2T)✬s(0,T)

✶s(T ,2T)✬✭
j�1

M1✁M2❡
j(T) is the total error at 2T . There-

fore, for a quantum-computing process consisting of many
gate operations, no matter how they are arranged in space
and time, the total nonadiabatic error is, to the first order, just
the sum of the errors of all these gates.

Suppose for each adiabatic gate, the time duration ❁T ,
and the minimum energy gap with other eigenstates ❁✂ .
Thus the lower bound of the nonadiabatic error for each gate
is ✉✉❡(T)✉✉❀✄ /✂T . Hence the lower bound of the total error
is s✬M❡(T), where M is is total number of gate operations.
For a quantum-computing process to make sense, it is con-
strained that ✉✉s✉✉✱1. Therefore, M✱1/✉✉❡(T)✉✉✺✂T/✄ . In
Shor’s algorithm, to factor a number N, M❀300(log10N)

3

❅18★. Therefore, adiabatic quantum computing can at most

factor N✬10(1/300☎☎✆(T)☎☎)
1/3
. For ✉✉❡(T)✉✉ of the order 10✷2,

N✬10.
Let us switch to the adiabatic quantum algorithm ❅5★,

which is based on adiabatically varying the Hamiltonian
from a beginning Hamiltonian Hb at t✺0 to a final one Hp at
t✺T . Under the adiabatic limit, if the system starts with the

ground state of Hb , it ends up as the ground state of Hp ,

which gives the solution to an optimization problem. For a

finite varying rate of the Hamiltonian, to the first order, the

more accurate state is as given in Eq. ⑦3✦. Hence to the first

order approximation, the nonadiabatic correction at time T is

of the order of 1/✂pT , where ✂p is the energy gap of Hp ,

which is independent of the specific path in which Hb is

evolved to Hp.

According to Eq. ⑦3✦, as far the perturbative approach is

valid, i.e., ✉❫❢0(t)✉❪ t❢n(t)✫ /(En✝E0)✉✱1, the measurement

shows that one of the eigenstates appears with probability

clearly the largest. Then one can know that this state corre-

sponds to the ground state and thus the solution to the prob-

lem. This is consistent with Ref. ❅6★.

To summarize, we developed a general, perturbative, for-

mulation of the adiabatic quantum-computing schemes,

which perturbatively describe the accurate evolution of the
state. It leads to a deeper understanding of the related issues.
The formalism is applied to analyze both the adiabatic geo-
metric quantum computation and the adiabatic quantum al-
gorithm. The order of magnitude of the first-order nonadia-
batic error is the inverse of the executing time times the
minimum gap with other eigenstates. Several proposed
physical implementations of the former are considered from
this point of view. Different proposals based on charging
Josephson junctions are compared. We also consider an en-
tire quantum-computing process consisting of many adia-
batic gates, obtaining the lower bound of the nonadiabatic
error, as an interesting constraint on the power of the quan-
tum computation based on adiabatic geometric gates. One
needs to enlarge the energy gap in order to reduce the nona-
diabatic error and thus improve the computational power. For
the adiabatic quantum algorithm, it is noted that it can be
realized as far as the perturbative approach, rather than the
rigorous adiabatic limit, is valid, hence the computational
time may be appropriately shortened.
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