37 research outputs found

    Fecal microbiota transplantation as an alternative treatment for infection and inflammation

    Get PDF
    Our intestinal microbiota comprises 100 trillion bacteria, exceeding our own eukaryotic cells. While the microbiota has incredible health benefits, changes in the normal flora caused by inflammation, antibiotics or diet can negatively impact health and may contribute to diseases such as inflammatory bowel disease (IBD) and obesity. Using healthy microbiota to treat individuals with intestinal disease is not a new idea and fecal microbiota transplantation (FMT) has been used as a successful therapy in patients suffering from Clostridium difficile infection. Currently FMT is being considered as a treatment for patients with IBD. This editorial will discuss the history of FMT and implications for treatment of other inflammatory intestinal diseases

    TLR1-induced chemokine production is critical for mucosal immunity against Yersinia enterocolitica.

    Get PDF
    Our gastrointestinal tract is a portal of entry for a number of bacteria and viruses. Thus, this tissue must develop ways to induce antigen-specific T cell and antibody responses quickly. Intestinal epithelial cells are a central player in barrier function and also in communicating signals from invading pathogens to the underlying immune tissue. Here we demonstrate that activation of Toll-like receptor 1 (TLR1) in the epithelium leads to the upregulation of the chemokine CCL20 during oral infection with Yersinia enterocolitica. Further, both neutralization of CCL20 using polyclonal antibody treatment and deletion of TLR1 resulted in a defect in CCR6+ dendritic cells (DCs), which produce innate cytokines that help to induce anti-Yersinia-specific T helper 17 (TH17) cells and IgA production. These data demonstrate a novel role for TLR1 signaling in the intestinal epithelium and demonstrate that together TLR1 and CCL20 are critical mediators of TH17 immunity through the activation and recruitment of DCs

    The History, Relevance, and Applications of the Periodic System in Geochemistry

    Get PDF
    Geochemistry is a discipline in the earth sciences concerned with understanding the chemistry of the Earth and what that chemistry tells us about the processes that control the formation and evolution of Earth materials and the planet itself. The periodic table and the periodic system, as developed by Mendeleev and others in the nineteenth century, are as important in geochemistry as in other areas of chemistry. In fact, systemisation of the myriad of observations that geochemists make is perhaps even more important in this branch of chemistry, given the huge variability in the nature of Earth materials – from the Fe-rich core, through the silicate-dominated mantle and crust, to the volatile-rich ocean and atmosphere. This systemisation started in the eighteenth century, when geochemistry did not yet exist as a separate pursuit in itself. Mineralogy, one of the disciplines that eventually became geochemistry, was central to the discovery of the elements, and nineteenth-century mineralogists played a key role in this endeavour. Early “geochemists” continued this systemisation effort into the twentieth century, particularly highlighted in the career of V.M. Goldschmidt. The focus of the modern discipline of geochemistry has moved well beyond classification, in order to invert the information held in the properties of elements across the periodic table and their distribution across Earth and planetary materials, to learn about the physicochemical processes that shaped the Earth and other planets, on all scales. We illustrate this approach with key examples, those rooted in the patterns inherent in the periodic law as well as those that exploit concepts that only became familiar after Mendeleev, such as stable and radiogenic isotopes

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    The Chemokine CCL2 Is Required for Control of Murine Gastric Salmonella enterica Infection

    No full text
    Salmonella enterica is a gram-negative intracellular pathogen that can cause a variety of diseases ranging from gastroenteritis to typhoid fever. The Typhimurium serotype causes gastroenteritis in humans; however, infection of mice results in an enteric fever that resembles human typhoid fever and has been used as a model for typhoid fever. The present study examined the role of the chemokine CCL2 in the control of Salmonella infection. Upon infection with salmonellae, mucosal expression of CCL2 is rapidly up-regulated, followed by systemic expression in the spleen. CCL2(−/−) mice became moribund earlier and had a higher rate of mortality compared to wild-type C57BL/6 mice. Moreover, CCL2(−/−) mice had significantly higher levels of bacteria in the liver compared to wild-type controls. Mucosal and serum interleukin-6 and tumor necrosis factor alpha levels were elevated in CCL2(−/−) mice compared to wild-type mice. In vitro analysis demonstrated that CCL2(−/−) macrophages infected with salmonellae resulted in dysregulated cytokine production compared to macrophages derived from wild-type mice. These data are the first to directly demonstrate CCL2 as a critical factor for immune responses and survival following S. enterica infection

    Retinoic acid can exacerbate T cell intrinsic TLR2 activation to promote tolerance.

    No full text
    The contribution of vitamin A to immune health has been well established. However, recent evidence indicates that its active metabolite, retinoic acid (RA), has the ability to promote both tolerogenic and inflammatory responses. While the outcome of RA-mediated immunity is dependent upon the immunological status of the tissue, the contribution of specific innate signals influencing this response have yet to be delineated. Here, we found that treatment with RA can dampen inflammation during intestinal injury. Importantly, we report a novel and unexpected requirement for TLR2 in RA-mediated suppression. Our data demonstrate that RA treatment enhances TLR2-dependent IL-10 production from T cells and this, in turn, potentiates T regulatory cell (TREG) generation without the need for activation of antigen presenting cells. These data also suggest that combinatorial therapy using RA and TLR2 ligands may be advantageous in the design of therapies to treat autoimmune or inflammatory disease
    corecore