1,660 research outputs found
Spin melting and refreezing driven by uniaxial compression on a dipolar hexagonal plate
We investigate freezing characteristics of a finite dipolar hexagonal plate
by the Monte Carlo simulation. The hexagonal plate is cut out from a piled
triangular lattice of three layers with FCC-like (ABCABC) stacking structure.
In the present study an annealing simulation is performed for the dipolar plate
uniaxially compressed in the direction of layer-piling. We find spin melting
and refreezing driven by the uniaxial compression. Each of the melting and
refreezing corresponds one-to-one with a change of the ground states induced by
compression. The freezing temperatures of the ground-state orders differ
significantly from each other, which gives rise to the spin melting and
refreezing of the present interest. We argue that these phenomena are
originated by a finite size effect combined with peculiar anisotropic nature of
the dipole-dipole interaction.Comment: Proceedings of the Highly Frustrated Magnetism (HFM2006) conference.
To appear in a special issue of J. Phys. Condens. Matte
Canonical Quantization of SU(3) Skyrme Model in a General Representation
A complete canonical quantization of the SU(3) Skyrme model performed in the
collective coordinate formalism in general irreducible representations. In the
case of SU(3) the model differs qualitatively in different representations. The
Wess-Zumino-Witten term vanishes in all self-adjoint representations in the
collective coordinate method for separation of space and time variables. The
canonical quantization generates representation dependent quantum mass
corrections, which can stabilize the soliton solution. The standard symmetry
breaking mass term, which in general leads to representation mixing,
degenerates to the SU(2) form in all self-adjoint representations.Comment: 24 RevTex4 pages, no figure
Electrical Control of Dynamic Spin Splitting Induced by Exchange Interaction as Revealed by Time Resolved Kerr Rotation in a Degenerate Spin-Polarized Electron Gas
The manipulation of spin degree of freedom have been demonstrated in spin
polarized electron plasma in a heterostructure by using exchange-interaction
induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as
revealed by time resolved Kerr rotation. The measured spin splitting increases
from 0.256meV to 0.559meV as the bias varies from -0.3V to -0.6V. Both the sign
switch of Kerr signal and the phase reversal of Larmor precessions have been
observed with biases, which all fit into the framework of
exchange-interaction-induced spin splitting. The electrical control of it may
provide a new effective scheme for manipulating spin-selected transport in spin
FET-like devices.Comment: 8 pages, 3 figures ; added some discussion
A New Phenomenology for the Disordered Mixed Phase
A universal phase diagram for type-II superconductors with weak point pinning
disorder is proposed. In this phase diagram, two thermodynamic phase
transitions generically separate a ``Bragg glass'' from the disordered liquid.
Translational correlations in the intervening ``multi-domain glass'' phase are
argued to exhibit a significant degree of short-range order. This phase diagram
differs significantly from the currently accepted one but provides a more
accurate description of experimental data on high and low-T materials,
simulations and current theoretical understanding.Comment: 15 pages including 2 postscript figures, minor changes in published
versio
Spin Dynamics in the Second Subband of a Quasi Two Dimensional System Studied in a Single Barrier Heterostructure by Time Resolved Kerr Rotation
By biasing a single barrier heterostructure with a 500nm-thick GaAs layer as
the absorption layer, the spin dynamics for both of the first and second
subband near the AlAs barrier are examined. We find that when simultaneously
scanning the photon energy of both the probe and pump beams, a sign reversal of
the Kerr rotation (KR) takes place as long as the probe photons break away the
first subband and probe the second subband. This novel feature, while stemming
from the exchange interaction, has been used to unambiguously distinguish the
different spin dynamics ( and ) for the first and second
subbands under the different conditions by their KR signs (negative for
and positive for ). In the zero magnetic field, by scanning
the wavelength towards the short wavelength, decreases in accordance
with the D'yakonov-Perel' (DP) spin decoherence mechanism. At 803nm,
(450ps) becomes ten times longer than (50ps). However, the
value of at 803nm is roughly the same as the value of at
815nm. A new feature has been disclosed at the wavelength of 811nm under the
bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times
( and ) and the effective factors ( and
) all display a sudden change, due to the "resonant" spin exchange
coupling between two spin opposite bands.Comment: 9pages, 3 figure
Hubbard U and Hund's Exchange J in Transition Metal Oxides: Screening vs. Localization Trends from Constrained Random Phase Approximation
In this work, we address the question of calculating the local effective
Coulomb interaction matrix in materials with strong electronic Coulomb
interactions from first principles. To this purpose, we implement the
constrained random phase approximation (cRPA) into a density functional code
within the linearized augmented plane wave (LAPW) framework.
We apply our approach to the 3d and 4d early transition metal oxides SrMO3
(M=V, Cr, Mn) and (M=Nb, Mo, Tc) in their paramagnetic phases. For these
systems, we explicitly assess the differences between two physically motivated
low-energy Hamiltonians: The first is the three-orbital model comprising the
t2g states only, that is often used for early transition metal oxides. The
second choice is a model where both, metal d- and oxygen p-states are retained
in the construction of Wannier functions, but the Hubbard interactions are
applied to the d-states only ("d-dp Hamiltonian"). Interestingly, since -- for
a given compound -- both U and J depend on the choice of the model, so do their
trends within a family of these compounds. In the 3d perovskite series SrMO3
the effective Coulomb interactions in the t2g Hamiltonian decrease along the
series, due to the more efficient screening. The inverse -- generally expected
-- trend, increasing interactions with increasing atomic number, is however
recovered within the more localized "d-dp Hamiltonian". Similar conclusions are
established in the layered 4d perovskites series Sr2MO4 (M=Mo, Tc, Ru, Rh).
Compared to their isoelectronic and isostructural 3d analogues, the 4d 113
perovskite oxides SrMO3 (M=Nb, Mo, Tc) exhibit weaker screening effects.
Interestingly, this leads to an effectively larger U on 4d shells than on 3d
when a t2g model is constructed.Comment: 21 pages, 7 figure
The telemetric monitoring of heart rate during copulatory behavior in the male rat
We have studied the physiological and behavioral responses in male rats to copulation and exercise. For this purpose, electrocardiographys (ECGs) were recorded from conscious and unrestrained rats using radiotelemetry system, Heart rate during copulation rose sharpiy following the induction of a receptive female, showed a peak of about 520 bpm during each ejaculation series, and then rapidly decreased. To compare the rate of decrease after ejaculation with that followingvigorous exercise, we run male rats on a motor wheel until heart rate became to the same value during ejaculation. Foliewing the cessation of exercise, heart rate decreased gradually. The possible role of the autonomic nervous system in the changes of heart rate during copulation and exercise is discussed
Spin-State Transition and Metal-Insulator Transition in LaEuCoO}
We present a study of the structure, the electric resistivity, the magnetic
susceptibility, and the thermal expansion of LaEuCoO. LaCoO
shows a temperature-induced spin-state transition around 100 K and a
metal-insulator transition around 500 K. Partial substitution of La by
the smaller Eu causes chemical pressure and leads to a drastic increase
of the spin gap from about 190 K in LaCoO to about 2000 K in EuCoO, so
that the spin-state transition is shifted to much higher temperatures. A
combined analysis of thermal expansion and susceptibility gives evidence that
the spin-state transition has to be attributed to a population of an
intermediate-spin state with orbital order for and without orbital
order for larger . In contrast to the spin-state transition, the
metal-insulator transition is shifted only moderately to higher temperatures
with increasing Eu content, showing that the metal-insulator transition occurs
independently from the spin-state distribution of the Co ions. Around
the metal-insulator transition the magnetic susceptibility shows a similar
increase for all and approaches a doping-independent value around 1000 K
indicating that well above the metal-insulator transition the same spin state
is approached for all .Comment: 10 pages, 6 figure
- …