Electrical Control of Dynamic Spin Splitting Induced by Exchange
Interaction as Revealed by Time Resolved Kerr Rotation in a Degenerate
Spin-Polarized Electron Gas
The manipulation of spin degree of freedom have been demonstrated in spin
polarized electron plasma in a heterostructure by using exchange-interaction
induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as
revealed by time resolved Kerr rotation. The measured spin splitting increases
from 0.256meV to 0.559meV as the bias varies from -0.3V to -0.6V. Both the sign
switch of Kerr signal and the phase reversal of Larmor precessions have been
observed with biases, which all fit into the framework of
exchange-interaction-induced spin splitting. The electrical control of it may
provide a new effective scheme for manipulating spin-selected transport in spin
FET-like devices.Comment: 8 pages, 3 figures ; added some discussion