28 research outputs found

    Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Get PDF
    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen. The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC) Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load), the reproducibility of measurements and the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/¹45]ns and two unidirectional laminates [0]ns and [90]ns. The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameter known as Back-out Factor (BF). The BF is determined by using the experimental values obtained from compression tests. Finally, extrapolated data were compared with prepreg manufacturer datashee

    Estimate of compressive strength of an unidirectional composite lamina using cross-ply and angle-ply laminates

    Get PDF
    In this work has been estimated the compressive strength of a unidirectional lamina of a carbon/epoxy composite material, using the cross-ply and angle-ply laminates. Over the years various methods have been developed to deduce compressive properties of composite materials reinforced with long fibres. Each of these methods is characterized by a specific way of applying load to the specimen.The method chosen to perform the compression tests is the Wyoming Combined Loading Compression (CLC) Test Method, described in ASTM D 6641 / D 6641M-09. This method presents many advantages, especially: the load application on the specimen (end load combined with shear load), the reproducibility of measurementsand the experimental equipment quite simplified. Six different laminates were tested in compressive tests. They were realized by the same unidirectional prepreg, but with different stacking sequences: two cross-ply [0/90]ns, two angle-ply [0/90/¹45]ns and two unidirectional laminates [0]ns and [90]ns.The estimate of the compressive strength of the unidirectional laminates at 0°, was done by an indirect analytical method, developed from the classical lamination theory, and which uses a multiplicative parameterknown as Back-out Factor (BF). The BF is determined by using the experimental values obtained from compression tests

    Excellent pulse height uniformity response of a new LaBr3:Ce scintillation crystal for gamma ray imaging

    No full text
    Nuclear Medicine SPECT imaging is taking on new challenges, regarding the improvement of quality and contrast of images. In order to reach this goal, energy resolution and Compton rejection capability have to be enhanced. For detectors based on scintillation crystal, the choice of a scintillator with high light yield is suitable; recently one of the major candidates is Lanthanum Tri-Bromide (LaBr3:Ce), with its high 63,000 ph/MeV light yield. Unfortunately, LaBr3:Ce suffers size limitations due to the actual growth techniques (maximum 3 in. diameter) and has also elevated cost. For these reasons, great interest is shown on small field of view detectors based on LaBr3:Ce, thought for imaging of specific physiological process or organ. To improve energy resolution, continuous crystals are more appropriate instead than pixelated ones. Since in a continuous crystal a decrease in position linearity, due to the light reflections, is typically obtained at the edges, an absorbent treatment of surfaces is generally utilized for SPECT applications. On the other hand, light absorption causes a relevant degradation of local energy resolution and pulse height uniformity response, affecting local image contrast. In this work an analysis on a new continuous LaBr3:Ce scintillation crystal with size proper to a small field of view gamma imager but with reflective treatment of surfaces is presented. This leads up to outstanding overall and local energy resolution results and excellent pulse height uniformity response on the whole field of view. Furthermore, preliminary imaging results are satisfactory, compared to the ones from a scintillation crystal with absorbent edge

    Readout of a labr3:ce continuous crystal by an mppc array: First results

    No full text
    In this work preliminary results of single-photon measurements made with a LaBr3:Ce continuous scintillation crystal (BrilLanCe 380™, by Saint-Gobain Crystals, FR) coupled to an array of Multi-Pixel Photon Counters (MPPC™, by Hamamatsu Photonics, JP) are presented. The array of 7 MPPCs was realized as the innermost element of the hexagonal Anger-like structure suitable for growing to larger areas by adding peripheral elements. The design of MPPC electronic readout for position determination was based on Anger logic. Wide-band amplifiers (by MITEQ®, US) were used for signals conditioning. Digitized traces of background, 57Co and 133Ba collimated irradiation were captured, characterized and stored by using the data-logging capabilities of a WaveMaster Oscilloscope (by LeCroy, US). Results are presented in terms of energy response, position sensing and signals fall and rise times. © 2009 Elsevier B.V. All rights reserved
    corecore