733 research outputs found
Progress towards Bell-type polarization experiment with thermal neutrons
Experimental tests of Bell-type inequalities distinguishing between quantum
mechanics and local realistic theories remain of considerable interest if
performed on massive particles, for which no conclusive result has yet been
obtained. Only two-particle experiments may specifically test the concept of
spatial nonlocality in quantum theory, whereas single-particle experiments may
generally test the concept of quantum noncontextuality. Here we have performed
the first Bell-type experiment with a beam of thermal-neutron pairs in the
singlet state of spin, as originally suggested by J. S. Bell. These
measurements confirm the quantum-theoretical predictions, in agreement with the
results of the well-known polarization experiments carried out on optical
photons years ago
Further evidence of antibunching of two coherent beams of fermions
We describe an experiment confirming the evidence of the antibunching effect
on a beam of non interacting thermal neutrons. The comparison between the
results recorded with a high energy-resolution source of neutrons and those
recorded with a broad energy-resolution source enables us to clarify the role
played by the beam coherence in the occurrence of the antibunching effect.Comment: 4 pages, 3 figure
The KLOE-2 High Energy Tagger Detector
In order to fully reconstruct to the reaction e+e- to e+e- gamma-gamma in the
energy region of the phi meson production, new detectors along the DAFNE beam
line have to be installed in order to detect the scattered e+e-. The High
Energy Tagger (HET) detector measures the deviation of leptons from their main
orbit by determining their position and timing so to tag gamma-gamma physics
events and disentangle them from background. The HET detectors are placed at
the exit of the DAFNE dipole magnets, 11 m away from the IP, both on positron
and electron lines. The HET sensitive area is made up of a set of 28 plastic
scintillators. A dedicated DAQ electronics board based on a Xilinx Virtex-5
FPGA have been developed for this detector. It provides a MultiHit TDC with a
time resolution of the order of 500 ps and the possibility to acquire data any
2.5 ns, thus allowing to clearly identify the correct bunch crossing. First
results of the commissioning run are presented.Comment: Submitted to proceedings of the 12th Pisa Meeting on Advanced
Detectors 2012, La Biodola, Isola d'Elba, Ital
First results from an aging test of a prototype RPC for the LHCb Muon System
Recent results of an aging test performed at the CERN Gamma Irradiation
Facility on a single--gap RPC prototype developed for the LHCb Muon System are
presented. The results are based on an accumulated charge of about 0.45
C/cm, corresponding to about 4 years of LHCb running at the highest
background rate. The performance of the chamber has been studied under several
photon flux values exploiting a muon beam. A degradation of the rate capability
above 1 kHz/cm is observed, which can be correlated to a sizeable increase
of resistivity of the chamber plates. An increase of the chamber dark current
is also observed. The chamber performance is found to fulfill the LHCb
operation requirements.Comment: 6 pages, 9 figures, presented at the International Workshop on Aging
Phenomena in Gaseous Detectors'', DESY-Hamburg (Germany), October 200
New results from an extensive aging test on bakelite Resistive Plate Chambers
We present recent results of an extensive aging test, performed at the CERN
Gamma Irradiation Facility on two single--gap RPC prototypes, developed for the
LHCb Muon System. With a method based on a model describing the behaviour of an
RPC under high particle flux conditions, we have periodically measured the
electrode resistance R of the two RPC prototypes over three years: we observe a
large spontaneous increase of R with time, from the initial value of about 2
MOhm to more than 250 MOhm. A corresponding degradation of the RPC rate
capabilities, from more than 3 kHz/cm2 to less than 0.15 kHz/cm2 is also found.Comment: 6 pages, 7 figures, presented at Siena 2002, 8th Topical Seminar on
Innovative Particle and Radiation Detectors 21-24 October 2002, Siena, Ital
Preliminary results of an aging test of RPC chambers for the LHCb Muon System
The preliminary results of an aging test performed at the CERN Gamma
Irradiation Facility on a single--gap RPC prototype developed for the LHCb Muon
System are presented. The results are based on an accumulated charge density of
0.42 C/cm^2, corresponding to about 4 years of LHCb running at the highest
background rate. We observe a rise in the dark current and noise measured with
source off. The current drawn with source on steadily decreased, possibly
indicating an increase of resistivity of the chamber plates. The performance of
the chamber, studied with a muon beam under several photon flux values, is
found to still fulfill the LHCb operation requirements.Comment: 4 pages, 6 figures, presented at RPC2001, VIth Workshop on Resistive
Plate Chambers and Related Detectors, November 26-27 2001, Coimbra, Portuga
u-RANIA: a neutron detector based on \mu -RWELL technology
In the framework of the ATTRACT-uRANIA project, funded by the European
Community, we are developing an innovative neutron imaging detector based on
micro-Resistive WELL ( -RWELL) technology. The -RWELL, based on the
resistive detector concept, ensuring an efficient spark quenching mechanism, is
a highly reliable device. It is composed by two main elements: a readout-PCB
and a cathode. The amplification stage for this device is embedded in the
readout board through a resistive layer realized by means of an industrial
process with DLC (Diamond-Like Carbon). A thin layer of BC on the copper
surface of the cathode allows the thermal neutrons detection through the
release of Li and particles in the active volume. This technology
has been developed to be an efficient and convenient alternative to the He
shortage. The goal of the project is to prove the feasibility of such a novel
neutron detector by developing and testing small planar prototypes with readout
boards suitably segmented with strip or pad read out, equipped with existing
electronics or readout in current mode. Preliminary results from the test with
different prototypes, showing a good agreement with the simulation, will be
presented together with construction details of the prototypes and the future
steps of the project.Comment: Prepared for the INSTR20 Conference Proceeding for JINS
ELMB Microcontroller Firmware and SCADA Integration for the LHCb Muon Detector Readout Control System
The LHCb system requires high efficiency muon detection into LHC bunch crossing: 95% into a 25 ns time window. To reach such efficiency many parameters of the detector readout apparatus have to be calibrated and adjusted and its channels must be aligned in time. In addition, essential characteristics must be monitored to guarantee a good working condition of the apparatus (to avoid loss of efficiency and to minimize systematic errors). As the number of the muon readout parameters is extremely high (∼700000 registers), a system able to process information in parallel is required: 122000 readout channels will be controlled by about 600 microcontrollers and 6 computers. The complexity of such an apparatus requires the use of a distributed system. For this a Supervisory Control And Data Acquisition (SCADA) based system is being developed to control the entire detector readout equipment. Moreover, a Finite State Machine (FSM) implementation is being developed to integrate the Detector Readout Control (DRC) into the LHC Experiment Control System (ECS)
Search for light-speed anisotropies using Compton scattering of high-energy electrons
Based on the high sensitivity of Compton scattering off ultra relativistic
electrons, the possibility of anisotropies in the speed of light is
investigated. The result discussed in this contribution is based on the
gamma-ray beam of the ESRF's GRAAL facility (Grenoble, France) and the search
for sidereal variations in the energy of the Compton-edge photons. The absence
of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence
level on a combination of photon and electron coefficients of the minimal
Standard Model Extension (mSME). This new constraint provides an improvement
over previous bounds by one order of magnitude.Comment: Talk presented at the Fifth Meeting on CPT and Lorentz Symmetry,
University of Indiana, June 28-July 2, 201
- …
