103 research outputs found

    Perturbative Solutions of the Extended Constraint Equations in General Relativity

    Full text link
    The extended constraint equations arise as a special case of the conformal constraint equations that are satisfied by an initial data hypersurface ZZ in an asymptotically simple spacetime satisfying the vacuum conformal Einstein equations developed by H. Friedrich. The extended constraint equations consist of a quasi-linear system of partial differential equations for the induced metric, the second fundamental form and two other tensorial quantities defined on ZZ, and are equivalent to the usual constraint equations that ZZ satisfies as a spacelike hypersurface in a spacetime satisfying Einstein's vacuum equation. This article develops a method for finding perturbative, asymptotically flat solutions of the extended constraint equations in a neighbourhood of the flat solution on Euclidean space. This method is fundamentally different from the `classical' method of Lichnerowicz and York that is used to solve the usual constraint equations.Comment: This third and final version has been accepted for publication in Communications in Mathematical Physic

    Spatial asymptotic expansions in the Navier-Stokes equation

    Full text link
    We prove that the Navier-Stokes equation for a viscous incompressible fluid in Rd\mathbb{R}^d is locally well-posed in spaces of functions allowing spatial asymptotic expansions with log terms as ∣x∣→∞|x|\to\infty of any a priori given order. The solution depends analytically on the initial data and time so that for any 0<ϑ<π/20<\vartheta<\pi/2 it can be holomorphically extended in time to a conic sector in C\mathbb{C} with angle 2ϑ2\vartheta at zero. We discuss the approximation of solutions by their asymptotic parts

    Odd-parity perturbations of self-similar Vaidya spacetime

    Get PDF
    We carry out an analytic study of odd-parity perturbations of the self-similar Vaidya space-times that admit a naked singularity. It is found that an initially finite perturbation remains finite at the Cauchy horizon. This holds not only for the gauge invariant metric and matter perturbation, but also for all the gauge invariant perturbed Weyl curvature scalars, including the gravitational radiation scalars. In each case, `finiteness' refers to Sobolev norms of scalar quantities on naturally occurring spacelike hypersurfaces, as well as pointwise values of these quantities.Comment: 28 page

    General existence proof for rest frame systems in asymptotically flat space-time

    Full text link
    We report a new result on the nice section construction used in the definition of rest frame systems in general relativity. This construction is needed in the study of non trivial gravitational radiating systems. We prove existence, regularity and non-self-crossing property of solutions of the nice section equation for general asymptotically flat space times. This proves a conjecture enunciated in a previous work.Comment: 14 pages, no figures, LaTeX 2

    Uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system

    Full text link
    We use optimal transportation techniques to show uniqueness of the compactly supported weak solutions of the relativistic Vlasov-Darwin system. Our proof extends the method used by Loeper in J. Math. Pures Appl. 86, 68-79 (2006) to obtain uniqueness results for the Vlasov-Poisson system.Comment: AMS-LaTeX, 21 page

    (In)finite extent of stationary perfect fluids in Newtonian theory

    Full text link
    For stationary, barotropic fluids in Newtonian gravity we give simple criteria on the equation of state and the "law of motion" which guarantee finite or infinite extent of the fluid region (providing a priori estimates for the corresponding stationary Newton-Euler system). Under more restrictive conditions, we can also exclude the presence of "hollow" configurations. Our main result, which does not assume axial symmetry, uses the virial theorem as the key ingredient and generalises a known result in the static case. In the axially symmetric case stronger results are obtained and examples are discussed.Comment: Corrections according to the version accepted by Ann. Henri Poincar

    Charmonium suppression at RHIC and SPS: a hadronic baseline

    Get PDF
    A kinetic equation approach is applied to model anomalous J/psi suppression at RHIC and SPS by absorption in a hadron resonance gas which successfully describes statistical hadron production in both experiments. The puzzling rapidity dependence of the PHENIX data is reproduced as a geometric effect due to a longer absorption path for J/psi production at forward rapidity.Comment: 16 pages, 6 figures, final version accepted for publication in Phys. Lett.

    Predictions of polarized dust emission from interstellar clouds: spatial variations in the efficiency of radiative torque alignment

    Full text link
    Polarization carries information about the magnetic fields in interstellar clouds. The observations of polarized dust emission are used to study the role of magnetic fields in the evolution of molecular clouds and the initial phases of star-formation. We study the grain alignment with realistic simulations, assuming the radiative torques to be the main mechanism that spins the grains up. The aim is to study the efficiency of the grain alignment as a function of cloud position and to study the observable consequences of these spatial variations. Our results are based on the analysis of model clouds derived from MHD simulations. The continuum radiative transfer problem is solved with Monte Carlo methods to estimate the 3D distribution of dust emission and the radiation field strength affecting the grain alignment. We also examine the effect of grain growth in cores. We are able to reproduce the results of Cho & Lazarian using their assumptions. However, the anisotropy factor even in the 1D case is lower than their assumption of γ=0.7\gamma = 0.7, and thus we get less efficient radiative torques. Compared with our previous paper, the polarization degree vs. intensity relation is steeper because of less efficient grain alignment within dense cores. Without grain growth, the magnetic field of the cores is poorly recovered above a few AVA_{\rm V}. If grain size is doubled in the cores, the polarization of dust emission can trace the magnetic field lines possibly up to AV∼10A_{\rm V} \sim 10 magnitudes. However, many of the prestellar cores may be too young for grain coagulation to play a major role. The inclusion of direction dependent radiative torque efficiency weakens the alignment. Even with doubled grain size, we would not expect to probe the magnetic field past a few magnitudes in AVA_{\rm V}.Comment: 12 pages, 15 figures, submitted to A&A 19.12.2008; 09.01.2009: Corrected the name of Juvela; 24.04.2009: revised, added content, 13 pages, 16 figures; 18.06.2009: Language edited, print versio

    An improved geometric inequality via vanishing moments, with applications to singular Liouville equations

    Full text link
    We consider a class of singular Liouville equations on compact surfaces motivated by the study of Electroweak and Self-Dual Chern-Simons theories, the Gaussian curvature prescription with conical singularities and Onsager's description of turbulence. We analyse the problem of existence variationally, and show how the angular distribution of the conformal volume near the singularities may lead to improvements in the Moser-Trudinger inequality, and in turn to lower bounds on the Euler-Lagrange functional. We then discuss existence and non-existence results.Comment: some references adde
    • …
    corecore