169 research outputs found

    Laser suction effect: Zero-basket technique for dusting ureteral stones with pulse modulation

    Get PDF
    Introduction and Objectives: In the laser suction effect, collapse of the vapor bubble leads to a change in pressure which produces a suction effect on the stone. In the Venturi effect, a vacuum is produced in front of the stone as the endoscope is withdrawn and the irrigating fluid helps push the stone out. During semi-rigid ureteroscopy (URS) and laser lithotripsy, it may be possible to use a combination of these two phenomena to help attract and evacuate stone fragments. In this video, we demonstrate our technique of dusting ureteral stones using pulse modulation for laser suction effect, along with Venturi effect, for evacuation of fragments without the need for basket retrieval. Materials and Methods: We present three patients with distal to mid ureteral stones (7 to 12 mm) undergoing semi-rigid URS and laser lithotripsy. Dusting settings of low pulse energy and moderate frequency with pulse modulation (Moses Contact mode) using a 230 ยตm core fiber was used to treat the stones (P120Moses, Lumenis). Each stone was able to be broken into dust and small fragments, which were sequentially evacuated out of the ureter. Results: Principles for this technique include: (1) Patient in reverse Trendelenburg position, (2) Semi-rigid ureteroscopy, (3) Safety guidewire, (4) Irrigation modulated by surgeon, (5) Low power (\u3c10 W) 0.3 J x 30 Hz dusting settings, (6) Pulse modulation (Moses Contact mode) to reduce retropulsion and keep fragments close to fiber tip for laser suction effect, (7) Activating laser on center of stone, (8) Advancing scope beyond fragments and withdrawal of scope for Venturi effect and fragment expulsion, (9) Manipulation of guidewire to help tease fragments out of ureteral orifice. In all three patients, the stone could be dusted and fragments expelled without the need for basketing. There were no complications and follow-up imaging showed no hydronephrosis or residual fragments. Conclusions: We present a method of dusting stones in the ureter with the semirigid ureteroscope using low pulse energy (0.3 J), and moderate frequency (30 Hz). Use of pulse modulation aids this approach, by reducing retropulsion and keeping fragments close to the scope while withdrawing it out of the ureter. A combination of fluid irrigation and scope withdrawal helps evacuate fragments from the ureter without the use of a basket

    Global Analysis of Extracytoplasmic Stress Signaling in Escherichia coli

    Get PDF
    The Bae, Cpx, Psp, Rcs, and ฯƒE pathways constitute the Escherichia coli signaling systems that detect and respond to alterations of the bacterial envelope. Contributions of these systems to stress response have previously been examined individually; however, the possible interconnections between these pathways are unknown. Here we investigate the dynamics between the five stress response pathways by determining the specificities of each system with respect to signal-inducing conditions, and monitoring global transcriptional changes in response to transient overexpression of each of the effectors. Our studies show that different extracytoplasmic stress conditions elicit a combined response of these pathways. Involvement of the five pathways in the various tested stress conditions is explained by our unexpected finding that transcriptional responses induced by the individual systems show little overlap. The extracytoplasmic stress signaling pathways in E. coli thus regulate mainly complementary functions whose discrete contributions are integrated to mount the full adaptive response

    Insights into the Molecular Basis of L-Form Formation and Survival in Escherichia coli

    Get PDF
    L-forms have been shown to occur among many species of bacteria and are suspected to be involved in persistent infections. Since their discovery in 1935, numerous studies characterizing L-form morphology, growth, and pathogenic potential have been conducted. However, the molecular mechanisms underlying the formation and survival of L-forms remain unknown. Using unstable L-form colonies of Escherichia coli as a model, we performed genome-wide transcriptome analysis and screened a deletion mutant library to study the molecular mechanisms involved in formation and survival of L-forms. Microarray analysis of L-form versus classical colonies revealed many up-regulated genes of unknown function as well as multiple over-expressed stress pathways shared in common with persister cells and biofilms. Mutant screens identified three groups of mutants which displayed varying degrees of defects in L-form colony formation. Group 1 mutants, which showed the strongest defect in L-form colony formation, belonged to pathways involved in cell envelope stress, DNA repair, iron homeostasis, outer membrane biogenesis, and drug efflux/ABC transporters. Four (Group 1) mutants, rcsB, a positive response regulator of colanic acid capsule synthesis, ruvA, a recombinational junction binding protein, fur, a ferric uptake regulator and smpA a small membrane lipoprotein were selected for complementation. Complementation of the mutants using a high-copy overexpression vector failed, while utilization of a low-copy inducible vector successfully restored L-form formation. This work represents the first systematic genetic evaluation of genes and pathways involved in the formation and survival of unstable L-form bacteria. Our findings provide new insights into the molecular mechanisms underlying L-form formation and survival and have implications for understanding the emergence of antibiotic resistance, bacterial persistence and latent infections and designing novel drugs and vaccines

    The genetic organisation of prokaryotic two-component system signalling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure.</p> <p>Results</p> <p>Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts.</p> <p>Conclusions</p> <p>We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, '<it>percentage orphaned TCS genes</it>' (or 'Dissemination') and '<it>percentage of complex loci</it>' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.</p

    Nฮตโˆ’Lysine Acetylation of a Bacterial Transcription Factor Inhibits Its DNA-Binding Activity

    Get PDF
    Evidence suggesting that eukaryotes and archaea use reversible Nฮต-lysine (Nฮต-Lys) acetylation to modulate gene expression has been reported, but evidence for bacterial use of Nฮต-Lys acetylation for this purpose is lacking. Here, we report data in support of the notion that bacteria can control gene expression by modulating the acetylation state of transcription factors (TFs). We screened the E. coli proteome for substrates of the bacterial Gcn5-like protein acetyltransferase (Pat). Pat acetylated four TFs, including the RcsB global regulatory protein, which controls cell division, and capsule and flagellum biosynthesis in many bacteria. Pat acetylated residue Lys180 of RcsB, and the NAD+-dependent Sir2 (sirtuin)-like protein deacetylase (CobB) deacetylated acetylated RcsB (RcsBAc), demonstrating that Nฮต-Lys acetylation of RcsB is reversible. Analysis of RcsBAc and variant RcsB proteins carrying substitutions at Lys180 provided biochemical and physiological evidence implicating Lys180 as a critical residue for RcsB DNA-binding activity. These findings further the likelihood that reversible Nฮต-Lys acetylation of transcription factors is a mode of regulation of gene expression used by all cells

    Functions of Some Capsular Polysaccharide Biosynthetic Genes in Klebsiella pneumoniae NTUH K-2044

    Get PDF
    The growing number of Klebsiella pneumoniae infections, commonly acquired in hospitals, has drawn great concern. It has been shown that the K1 and K2 capsular serotypes are the most detrimental strains, particularly to those with diabetes. The K1 cps (capsular polysaccharide) locus in the NTUH-2044 strain of the pyogenic liver abscess (PLA) K. pneumoniae has been identified recently, but little is known about the functions of the genes therein. Here we report characterization of a group of cps genes and their roles in the pathogenesis of K1 K. pneumoniae. By sequential gene deletion, the cps gene cluster was first re-delimited between genes galF and ugd, which serve as up- and down-stream ends, respectively. Eight gene products were characterized in vitro and in vivo to be involved in the syntheses of UDP-glucose, UDP-glucuronic acid and GDP-fucose building units. Twelve genes were identified as virulence factors based on the observation that their deletion mutants became avirulent or lost K1 antigenicity. Furthermore, deletion of kp3706, kp3709 or kp3712 (ฮ”wcaI, ฮ”wcaG or ฮ”atf, respectively), which are all involved in fucose biosynthesis, led to a broad range of transcriptional suppression for 52 upstream genes. The genes suppressed include those coding for unknown regulatory membrane proteins and six multidrug efflux system proteins, as well as proteins required for the K1 CPS biosynthesis. In support of the suppression of multidrug efflux genes, we showed that these three mutants became more sensitive to antibiotics. Taken together, the results suggest that kp3706, kp3709 or kp3712 genes are strongly related to the pathogenesis of K. pneumoniae K1

    Relating gene expression data on two-component systems to functional annotations in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obtaining physiological insights from microarray experiments requires computational techniques that relate gene expression data to functional information. Traditionally, this has been done in two consecutive steps. The first step identifies important genes through clustering or statistical techniques, while the second step assigns biological functions to the identified groups. Recently, techniques have been developed that identify such relationships in a single step.</p> <p>Results</p> <p>We have developed an algorithm that relates patterns of gene expression in a set of microarray experiments to functional groups in one step. Our only assumption is that patterns co-occur frequently. The effectiveness of the algorithm is demonstrated as part of a study of regulation by two-component systems in <it>Escherichia coli</it>. The significance of the relationships between expression data and functional annotations is evaluated based on density histograms that are constructed using product similarity among expression vectors. We present a biological analysis of three of the resulting functional groups of proteins, develop hypotheses for further biological studies, and test one of these hypotheses experimentally. A comparison with other algorithms and a different data set is presented.</p> <p>Conclusion</p> <p>Our new algorithm is able to find interesting and biologically meaningful relationships, not found by other algorithms, in previously analyzed data sets. Scaling of the algorithm to large data sets can be achieved based on a theoretical model.</p

    Discovery and profiling of small RNAs responsive to stress conditions in the plant pathogen <i>Pectobacterium atrosepticum</i>

    Get PDF
    BACKGROUND: Small RNAs (sRNAs) have emerged as important regulatory molecules and have been studied in several bacteria. However, to date, there have been no whole-transcriptome studies on sRNAs in any of the Soft Rot Enterobacteriaceae (SRE) group of pathogens. Although the main ecological niches for these pathogens are plants, a significant part of their life cycle is undertaken outside their host within adverse soil environment. However, the mechanisms of SRE adaptation to this harsh nutrient-deficient environment are poorly understood. RESULTS: In the study reported herein, by using strand-specific RNA-seq analysis and in silico sRNA predictions, we describe the sRNA pool of Pectobacterium atrosepticum and reveal numerous sRNA candidates, including those that are induced during starvation-activated stress responses. Consequently, strand-specific RNA-seq enabled detection of 137 sRNAs and sRNA candidates under starvation conditions; 25 of these sRNAs were predicted for this bacterium in silico. Functional annotations were computationally assigned to 68 sRNAs. The expression of sRNAs in P. atrosepticum was compared under growth-promoting and starvation conditions: 68 sRNAs were differentially expressed with 47 sRNAs up-regulated under nutrient-deficient conditions. Conservation analysis using BLAST showed that most of the identified sRNAs are conserved within the SRE. Subsequently, we identified 9 novel sRNAs within the P. atrosepticum genome. CONCLUSIONS: Since many of the identified sRNAs are starvation-induced, the results of our study suggests that sRNAs play key roles in bacterial adaptive response. Finally, this work provides a basis for future experimental characterization and validation of sRNAs in plant pathogens. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-016-2376-0) contains supplementary material, which is available to authorized users
    • โ€ฆ
    corecore