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retractable walls and a transverse magnetic field
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aBeijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and
Physics, University of Science and Technology Beijing, Beijing 100083, China;

b Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom;
c School of Mathematics and Physics, University of South China, Hengyang 421001, Hunan Province, China

Abstract

The self-similarity solutions to the Navier-Stokes equations are constructed for an incompressible
laminar flow through a uniformly porous channel with retractable walls under a transverse
magnetic field. The flow is driven by the expanding or contracting walls with different
permeability. The velocities of the asymmetric flow at the upper and lower walls are different in
not only the magnitude but also the direction. The asymptotic solutions are well constructed
with the method of boundary layer correction in two cases with large Reynolds numbers, i.e.,
both walls of the channel are with suction, and one of the walls is with injection while the other
one is with suction. For small Reynolds number cases, the double perturbation method is used to
construct the asymptotic solution. All the asymptotic results are finally verified by numerical
results.

Keywords: laminar flow, asymmetric flow, asymptotic solution, porous and retractable channel,
magnetic field

1. Introduction

The studies of laminar flow through porous channels with retractable walls have received extensive
attention in the fields of fluid and mathematics due to their close connections with massive biological
and engineering problems, e.g., blood flow in vessels, nutrition liquid transport in biological organisms,
mass transfer among blood, air, and tissue, uniformly distributed irrigation, and natural transpiration.
The electrically conducting viscous fluid in a channel with permeable walls can be used to simulate the
biological problems. Taking blood flow in vessels as an example, when the blood is considered as an
electrically conducting fluid, Higashi et al.[1] showed that the magnetic field has a significant effect on
the vascular system based on the experimental investigation.

Berman [2] analyzed the two-dimensional steady laminar flow of a viscous incompressible fluid through
a porous channel with uniform injection or suction by full using the symmetry to simplify the model for
the first time, and reduced the Navier-Stokes equations to a fourth-order nonlinear ordinary differential
equation with a parameter R (see Section 2 for its definition) and four boundary conditions. Numerous
studies about the laminar flow in a channel with permeable walls followed. Yuan [3] derived an asymptotic
solution for the large injection case. Terrill [4] improved the solution by considering the inner layer. Sellars
[5] and Terrill [6] investigated the large suction cases, and derived an asymptotic solution. Afterwards,
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in order to precisely simulate the blood flow, Uchida and Aoki [7] investigated the unsteady laminar flow
driven by a single contraction or expansion of the channel walls. Goto and Uchida [8] studied the laminar
flow in a semi-infinite porous pipe, the radius of which varied with time. Majdalani et al.[9] studied
the laminar flow between slowly expanding or contracting walls, and obtained the similarity solution to
describe the transport of biological fluids. Majdalani and Zhou [10] investigated the large injection and
suction cases in a channel with retractable walls, and obtained the asymptotic solutions. For more details,
one may refer to Asghar et al.[11], Xu et al.[12], and Dauenhauer and Majdalani [13].

Suryaprakasrao [20] investigated the laminar flow of an electrically-conductive viscous fluid in a porous
channel under a transverse magnetic field for the first time, and obtained the asymptotic solution for
the case with a small suction Reynolds number and small magnetic field number. Terrill and Shrestha
[21, 22, 23] and made further extension of Suryaprakasrao’s work, and obtained the asymptotic solutions
for large suction and injection Reynolds numbers and all values of the Hartamnn number. Based on these
works, investigators began to take account of the wall motion [24].

The asymmetric laminar flow caused by different wall permeability can be traced back to Proudman
[14] , who proposed the asymmetric flow for the first time. Terrill and Shrestha [15, 16, 17] and Shrestha
and Terrill [17] extended Proudman’work, and obtained a series of asymptotic solutions with the method
of matched asymptotic expansions for large injection, large suction, and mixed cases. Cox [18] and King
and Cox [19] considered the problem of steady and unsteady flow in a channel with only one porous wall.
Zhang et al.[26] studied the asymmetric flow analytically and numerically. However, these asymmetric
work did not consider the cases with wall motion and a transverse magnetic filed in a channel.

In this paper, we will investigate the general asymmetric flow of an incompressible viscous fluid through
a porous and retractable channel with a transverse magnetic field, and present the asymptotic solutions.
The paper is arranged as follows. In Section 2, the formulation of the problem is presented by reducing
the Navier-Stokes equations into a nonlinear ordinary differential equation via a similarity transformation.
In Section 3, the effects of the magnetic field on the solution is examined, and the asymptotic solutions
for different orders of the Reynolds and Hartman numbers are obtained. In Section 4, the asymptotic
solutions for large Reynolds numbers in the case that one wall of the channel is with injection while the
other wall is with suction are constructed. In Section 5, an asymptotic solution for the case of slowly
contracting and weak permeability is presented. In Section 6, all the obtained solutions are verified by
the numerical solutions. The summarization is given in Section 7 finally.

2. Mathematical formulation

The equations of the continuity and momentum for the unsteady laminar flow of an incompressible
viscous and electrically conducting fluid through a porous and retractable channel with a transverse
magnetic field are

∇ ·V = 0, (2.1)

and
∂V

∂t
+ (V · ∇)V = −1

ρ
∇ p+ ν∇2V +

1

ρ
J×B, (2.2)

where J and B are given by the Maxwell equations

∇× H = 4πJ, (2.3)

∇× E = 0, (2.4)

∇ · B = 0, (2.5)

and Ohm’s law
J = σ(E + V×B). (2.6)
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In the above equations, B = µmH. The symbol J represents the current density, E the electric field,
H the magnetic field, ν the viscosity of the fluid, σ the electrical conductivity and µm the magnetic
permeability. An elongated rectangular channel exhibiting a sufficiently large aspect ratio of width L
to height h(t) and with one closed end is here considered. Despite the channel’s finite body length, it
is reasonable to assume that the channel is semi-infinite length in order to neglect the influence of the
opening at the end[7]. Permeability of both walls which expand or contract uniformly at a time-dependent
rate ḣ(t) is different. Assume that the fluid velocity at the lower wall is −v1 and the upper wall is −v2.
Furthermore, a constant magnetic field of strength H0 is applied perpendicular to the walls. It is assumed
that there is no external electric field and the effect of magnetic and electric field produced by the motion
of the electrically conducting fluid can be negligible[20, 21, 22]. With these assumptions the magnetic
term J×B of the body force in (2.2) reduces to

J×B = −σB0
2V, (2.7)

where B0 = µmH0. Let x̃ and ỹ be the co-ordinates measured along and perpendicular to the flow
direction respectively, u and v be the velocity components (i.e.V = (u, v)) in the x̃ and ỹ directions
respectively.

The boundary conditions satisfied by the flow are

u(x̃,−h) = 0, v(x̃,−h) = −v1 = −A1ḣ,

u(x̃, h) = 0, v(x̃, h) = −v2 = −A2ḣ, (2.8)

where A1 and A2 are constant measures of the lower and upper wall permeabilities, respectively. We shall
introduce a stream function[10]

φ =
νx̃

h
F (y, t), (2.9)

where y = ỹ/h is the dimensionless height. Then the velocity components are given by

u =
∂φ

∂ỹ
=
νx̃

h2
Fy, v = −∂φ

∂x̃
= −ν

h
F, (2.10)

so that the continuity equation (2.1) is naturally satisfied. Assuming |v2| ≥ |v1|, without loss of generality,
and substituting (2.10) into (2.1)-(2.2) give rise to

f ′′′ + α(yf ′′ + 2f ′) +R(ff ′′ − f ′2)−M2f ′ = K(R), (2.11)

with the boundary conditions

f(−1) = 1− α2, f ′(−1) = 0, f(1) = 1, f ′(1) = 0, (2.12)

where α is the wall expansion ratio defined by α = hḣ
ν ( positive for expansion and negative for contraction),

R = v2h
ν is the Reynolds number (positive for injection and negative for suction), M = µmH0h( σρν )

1
2 is

the Hartman number, α2 = 1− v1
v2

is an asymmetric parameter and K is an integration constant. Similar
derivations for transforming the Navier-Stokes equation into (2.11) can be referred to Majdalani and
Zhou[9]. The fluid flow through the channel is symmetric about the centre line of the channel for α2 = 2.
In this paper, we will mainly focus on the asymmetric flow.
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3. Asymptotic solutions for large suction case

In this section, we will consider the case that both walls of the channel are with large suction and the
suction velocities on the upper and lower wall are different. An asymptotic solution will be constructed
for α = O(1) and M2 = O(1) as R→ −∞ and for α = O(1) and M2 = O(R) as R→ −∞, respectively.

3.1. Asymptotic solution for large suction Reynolds number R

For the large suction case, assuming v1 > 0 > v2, by treating ε = − 1
R > 0 as a perturbation parameter,

(2.11) can be written as

εf ′′′ + εα(yf ′′ + 2f ′)− (ff ′′ − f ′2)− εM2f ′ = k, (3.1)

where εK(R) = k, which is the equation to be solved for the suction case subject to the boundary
conditions (2.12). If the channel wall is with large suction, there exists a boundary layer near the upper
wall for M = 0 and α2 = 2[10]. Motivated from their thinking, there may be a boundary layer near
both walls and the correction near both walls may be needed. Therefore, the method of boundary layer
correction[25] is used to construct the asymptotic solution. Hence, the solution can be expanded as
following form

f = f0(y) + ε(f1(y) + g1(τ) + h1(η)) + ε2(f2(y) + g2(τ) + h2(η)) + · · · , (3.2)

and the integrating constant k can be written as

k = k0 + εk1 + ε2k2 + · · · , (3.3)

where τ = 1−y
ε and η = 1+y

ε are the stretching transformations near the wall dimensionless height y = 1
and y = −1, respectively, and gi(τ) and hi(η), i = 1, 2, 3 · · · , are boundary layer functions (gi(τ) and
hi(η) rapidly decay when y is away from y = 1 and y = −1, respectively).

Substituting (3.2) and (3.3) into (3.1) and equating the equal powers of ε yield

ε0 : f ′20 − f0f ′′0 = k0 (3.4)

ε1 : 7f0f
′′
1 − 2f ′0f

′
1 + f ′′0 f1 = α(yf ′′0 + 2f ′0)−M2f ′0 + f ′′′0 − k1 (3.5)

ε2 : f0f
′′
2 − 2f ′0f

′
2 + f ′′0 f2 = α(yf ′′1 + 2f ′1)−M2f ′1 + f ′′′1 − f1f ′′1 + f ′21 − k2 (3.6)

· · · · · ·
ε−1 :

...
g 1 + f0(1)g̈1 = 0 (3.7)

ε0 :
...
g 2 + f0(1)g̈2 = (α− f1(1))g̈1 + f ′0(1)τ g̈1 − g1g̈1 − 2f ′0(1)ġ1 + g̈21 = 0 (3.8)

· · · · · ·
ε−1 :

...
h 1 − f0(−1)ḧ1 = 0 (3.9)

ε0 :
...
h 2 − f0(−1)ḧ2 = (f1(−1) + α)ḧ1 + f ′0(−1)ηḧ1 + h1ḧ1 − 2f ′0(−1)ḣ1 − ḣ21 = 0 (3.10)

· · · · · ·

where f ′, ġ and ḣ denote the derivatives with respect to y, τ and η, respectively, and we have used fi(y) =
fi(1−ετ) = fi(1)−ετf ′i(1)+ 1

2ε
2τ2f ′′i (1)+· · · and fi(y) = fi(εη−1) = fi(−1)+εηf ′i(−1)+ 1

2ε
2η2f ′′i (−1)+· · · ,

i = 0, 1, 2 · · · , and gj(τ)hj(η) is exponentially small (considering them approximately as zero in the rest
of the section, j = 1, 2 · · · ). By substituting (3.2) into (2.12), the boundary conditions to be satisfied by
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fi(y), gi(τ) and hi(η) at y = 1 or τ = 0 and y = −1 or η = 0 are

f0|y=1 = 1, f0|y=−1 = 1− α2 = a, (3.11)

f ′i−1|y=1 − ġi|τ=0 = 0, i = 1, 2, · · · , (3.12)

f ′i−1|y=−1 + ḣi|η=0 = 0, i = 1, 2, · · · , (3.13)

fi|y=1 + gi|τ=0 = 0, fi|y=−1 + hi|η=0 = 0, i = 1, 2, · · · , (3.14)

where a = v1
v2

(i.e.−1 < a < 0). One solution of (3.4) with the boundary condition (3.11) is

f0 =
1− a

2
y +

1 + a

2
(3.15)

and k0 = (a−1)2
4 . Thus, the boundary condition (3.12) becomes

ġ1|τ=0 = f ′0|y=1 =
1− a

2
. (3.16)

The boundary layer solution of (3.7) satisfying the condition (3.16) is

g1 =
a− 1

2
e−τ . (3.17)

Also, the boundary layer solution of (3.9) satisfying the condition (3.13) is

h1 =
a− 1

2a
eaη. (3.18)

Substituting (3.15) into (3.5) gives rise to

1

2
((a− 1)y − a− 1)f ′′1 + (1− a)f ′1 =

1

2
(2α−M2)(a− 1)− k1. (3.19)

The corresponding boundary conditions from (3.14) are

f1|y=1 = −g1|τ=0 =
1− a

2
, f1|y=−1 = −h1|η=0 =

1− a
2a

. (3.20)

Hence, the solution of f1 subject to (3.20) is

f1 =
−1

16a(a2 + a+ 1)
{[(a− 1)2(a2 + 2M2a− 4αa− 2a+ 1)− 4a(a− 1)k1]y

3 − 3[(a2 − 1)(a2

+ 2M2a− 4αa− 2a+ 1)− 4a(a+ 1)k1]y
2 + [(a− 1)2(3a2 − 2M2a+ 4αa+ 6a+ 3)

4a(a− 1)k1]y + [(a2 − 1)(7a2 + 6M2a− 12αa− 2a+ 7)− 12a(a+ 1)k1]}, (3.21)

where the parameter k1 is still unknown and to be determined next.
Substituting (3.15) and (3.21) into (3.6), one can obtain the expression of f2. We find that one term of
f2 is

(M2 − 4α)[(a2 + 2M2a− 4αa− 2a+ 1)(a− 1)− 4ak1]

8(a− 1)3(a2 + a+ 1)a
((1− a)y + a+ 1)3 log((1− a)y + a+ 1), (3.22)

which is a secular term. Thus, the term must be zero and then k1 = (a−1)
4a (a2 + 2M2a − 4αa − 2a + 1).
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The expression of f1 becomes

f1 = −(a− 1)2

4a
y +

1− a2

4a
. (3.23)

Then, according to (3.12), the boundary condition for g2 becomes

ġ2|τ=0 = f ′1|y=1 =
−(a− 1)2

4a
. (3.24)

Substituting (3.17) into equation (3.8), we obtain

g2 =
1− a

8a
[(a2 − a)τ2 + 2(3a2 − 2αa− 3a)τ + 6a2 − 4αa− 8a+ 2]e−τ . (3.25)

Similarly, the solution of h2 becomes

h2 =
a− 1

8a3
[−(a3 − a2)η2 + 2(2αa+ 3a− 3)aη + 2(a2 − 2αa− 4a+ 3)]eaη. (3.26)

Hence, the boundary conditions for f2 from (3.14) are

f2|y=1 = −g2|τ=0 =
(a− 1)

4a
(3a2 − 2αa− 4a+ 1), (3.27)

f2|y=−1 = −h2|η=0 =
(1− a)

4a3
(a2 − 2αa− 4a). (3.28)

Substituting (3.15) and (3.23) into (3.6) yields

1

2
((a− 1)y − a− 1)f ′′2 + (1− a)f ′2 +

(a− 1)2

16a2
(a2 + (4M2 − 8α− 2)a+ 1) = k2. (3.29)

One obtains

f2 =
a− 1

8a3
[(3a4 − (4 + 2α)a3 + 2a2 − (4 + 2α)a+ 3)y + (a2 − 1)(3a2 − (4 + 2α)a+ 3)]? (3.30)

and k2 = − (a−1)2
16a3

(6a4− (9+4α)a3− (4M2−8α−6)a2− (9+4α)a+6) which is determined by eliminating
the Secular term of f3. Finally, the asymptotic solution for the large suction case of y ∈ [−1, 1] is

f(y) =
1− a

2
y +

1 + a

2
+ ε[−(a− 1)2

4a
y +

1− a2

4a
+
a− 1

2
e−τ +

a− 1

2a
eaη] + ε2{a− 1

8a3
[(3a4 − (4

+ 2α) · a3 + 2a2 − (4 + 2α)a+ 3)y + (a2 − 1)(3a2 − (4 + 2α)a+ 3)] +
1− a

8a
[(a2 − a)τ2

+ 2(3a2 − 2αa− 3a)τ + 6a2 − 4αa− 8a+ 2]e−τ +
a− 1

8a3
[−(a3 − a2)η2 + 2(2αa+ 3a

− 3)aη + 2(a2 − 2αa− 4a+ 3)]eaη}+O(ε3), (3.31)

where τ = 1−y
ε and η = 1+y

ε .

3.2. Asymptotic solution for large suction Reynolds number R and large Hartmann number M

It is clear from (3.31) that the effect of magnetic field on channel flow can be negligible, hence, in this
section, we will consider the case of large magnetic field, which may have noticeable effect to the flow.
When the suction Reynolds number R and the Hartmann number M are both large and we take the same
order of effect on the flow through the channel, there may exist a combined viscous suction and magnetic
boundary layer at both channel walls. Hence, we assume r = −M2

R > 0 and r ∼ O(1) and choose ε = − 1
R
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as the perturbation parameter. The method used in Section 3.1 can be applied to this case. Equation
(2.11) can be written as

εf ′′′ + εα(yf ′′ + 2f ′)− (ff ′′ − f ′2) + rf ′ = k, (3.32)

where εK(R) = k. A solution of (3.32) satisfying the corresponding boundary conditions (2.12) can be
obtained by using the similar procedure as in the large suction case. Hence, the expressions of fi, gi and
hi are listed directly below in order to avoid tedious calculations and duplicatious:

f0 =
1− a

2
y +

1 + a

2
, (3.33)

f1 = −(a− 1)2

4a
y +

1− a2

4a
, (3.34)

f2 =
a− 1

8a3
[(3a4+(2r−2α−4)a3+2a2−(4+2α)a−2r+3)y+3a4+(2r−2α−4)a3+(4+2α)a+2r−3], (3.35)

g1 =
a− 1

2
e−τ , (3.36)

h1 =
a− 1

2a
eaη, (3.37)

g2 =
a− 1

8a
[−(a2 − a)τ2 − 2(3a2 + (2r − 2α− 3)a)τ − 2(3a2 + 2(r − α− 2)a+ 1)]e−τ , (3.38)

h2 =
a− 1

8a3
[−(a3 − a2)η2 + 2((3 + 2α)a2 + (2r − 3)a)η + 2(a2 − (4 + 2α)a− 2r + 3)]eaη. (3.39)

Then the asymptotic solution for this case is given as follow:

f(y) =
1− a

2
y +

1 + a

2
+ ε[−(a− 1)2

4a
y +

1− a2

4a
+
a− 1

2
e−τ +

a− 1

2a
eaη] + ε2{a− 1

8a3
[(3a4

+ (2r − 2α− 4)a3 + 2a2 − (4 + 2α)a− 2r + 3)y + 3a4 + (2r − 2α− 4)a3 + (4 + 2α)a

+ 2r − 3] +
a− 1

8a
[−(a2 − a)τ2 − 2(3a2 + (2r − 2α− 3)a)τ − 2(3a2 + 2(r − α− 2)a

+ 1)]e−τ +
a− 1

8a3
[−(a3 − a2)η2 + 2((3 + 2α)a2 + (2r − 3)a)η + 2(a2 − (4 + 2α)a− 2r

+ 3)]eaη}+O(ε3), (3.40)

where τ = 1−y
ε , η = 1+y

ε and −1 < a < 0. From (3.40), we know that the large magnetic field has
noticeable effect on the flow.

4. Asymptotic solutions for mixed cases

For the asymmetric model, we will consider the case where the injection and suction are mixed at
the upper and lower walls. The mixed cases are either mixed injection or mixed suction for the porous
channel flow which was considered by Terril [16]. The flow governed by (2.11) is of mixed injection for
positive values v1 and v2, while the flow is of mixed suction for negative values of v1 and v2. Both of the
asymptotic expressions are presented in the subsequent subsections respectively.
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4.1. Asymptotic solution for the mixed injection case

For the mixed injection case, assuming v2 ≥ v1 > 0 (i.e. 0 < a ≤ 1), the equation, satisfying the
condition (2.12), can be written as

εf ′′′ + εα(yf ′′ + 2f ′) + (ff ′′ − f ′2)− εM2f ′ = k, (4.1)

where ε = 1
R > 0 can be treated as a small parameter and k is an arbitrary constant.

The wall dimensionless height y = −1 is with suction which may produce the boundary layer, while
the other wall y = 1 is with injection. One correction term may have to be introduced due to the presence
of boundary layer at y = −1. Thus, f(y) and k are expanded as

f(y) = f0(y) + ε(f1(y) + h1(η)) + ε2(f2(y) + h2(η)) + · · · , (4.2)

k = k0 + εk1 + εk2 + · · · , (4.3)

where η = 1+y
ε is the stretching transformation near y = −1 and hi(η), i = 1, 2 · · · are boundary layer

functions (rapidly decay when y is away from the wall y = −1). By substituting (4.2) into (2.12), the
boundary conditions become

f0|y=1 = 1, f ′0|y=1 = 0, f0|y=−1 = 1− α2 = a, (4.4)

f ′i−1|y=−1 + ḣi|η=0 = 0, i = 1, 2, · · · , (4.5)

fi|y=1 = 0, f ′i |y=1 = 0, fi|y=−1 + hi|η=0 = 0, i = 1, 2, · · · , (4.6)

Substituting (4.2) and (4.3) into (4.1) yields, at O(1),

f0f
′′
0 − f ′20 = k0 (4.7)

subject to (4.4).
It can be easily verified that the leading order solution is f0 = cos(by− b) which is a periodic function,

then, we obtain b = cos−1 a+2nπ
2 and k0 = −b2 = − (cos−1 a+2nπ)2

4 , n = 0, 1, 2 · · · . Thus, we obtain
many solutions of (4.7). f ′0 which is proportional to the streamwise velocity u does not change sign
for n = 0. However, f ′0 does change sign at least three times for n = 1(i.e. the streamwise fluid
flow direction will change at least three times). f ′0 does change sign at least five times for n ≥ 2,
these phenomena may not occur physically. Laboratory experiment on porous pipe without expansion or
contracting has been conducted by Wageman and Guevara [27] who obtain zero order asymptotic solution

f0 = (−1)n
B sin (2n+1)πX

2 , n = 0, 1, 2... for injection case. The only solution that has been experimentally
observed was that case n = 0 in Guevara’s work. Meanwhile, Proudman[14] pointed out that f can have
at most one zero which is common to any combination of signs of v1 and v2 for the reduced solution.
However, there is at least two zeros for n > 0. Therefore, there must be n = 0.

Now we consider f0 = cos(by − b) as the leading order solution. When the terms of O(ε−1) are
collected, the equation for h1 becomes

...
h 1 + f0(−1)ḧ1 = 0, (4.8)

and satisfies the boundary condition (4.5)

ḣ1|η=0 = −f ′0|y=−1 = −b sin 2b. (4.9)

Hence, the solution h1 is

h1 =
b

a
sin 2b · e−aη. (4.10)
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When terms of O(ε) are collected, the differential equation for f1 becomes

f0f
′′
1 − 2f ′0f

′
1 + f ′′0 f1 = −f ′′′0 − α(yf ′′0 + 2f ′0) +M2f ′0 + k1. (4.11)

The boundary conditions (4.6) are

f1|y=1 = 0, f ′1|y=1 = 0, f1|y=−1 = −h1|η=0 = − b
a

sin 2b. (4.12)

To simplify the equation, let z = by − b. Then, (4.11) can be written as

b cos zf ′′1 + 2b sin zf ′1 − b cos zf1 = (b+ z)α cos z + (2α−M2 − b2) sin z + λ, (4.13)

where ’ denotes the derivative with respect to z and λ = k1
b , and the boundary conditions become

f1|z=0 = 0, f ′1|z=0 = 0, f1|z=−2b = − b
a

sin 2b. (4.14)

To construct the solution of (4.13), start with the corresponding homogeneous equation

b cos zf ′′1h + 2b sin zf ′1h − b cos zf1h = 0. (4.15)

We can easily obtain its solution

f1h = P1 sin z + P0(z sin z + cos z), (4.16)

where P0 and P1 are two arbitrary constants. Applying the method of variation of parameters, we look
for the solution of (4.16) in the terms of

f1 = P1(z) sin z + P0(z)(z sin z + cos z). (4.17)

Through the standard process, it is obvious that

P0 =
1

2b
[(b2 +M2−4α)(ln(1−sin z)− ln cos z)+sec2 z(b2 +M2−2α) sin z−λ−2α(b+z) cos z+(b2)]+n0,

(4.18)

P1 =
1

2b
(−2(b2 +M2 − 2α− bαz) sec z + λz sec2 z + λ tan z) +Q(z) + n1, (4.19)

where

Q(z) =
α

b
z2 sec z +

1

b

∫ z

0
(b2 +M2 + α)φ secφ− (b2 +M2 − 2α)φ sec3 φdφ, (4.20)

and n0 and n1 are constants to be determined using the boundary conditions. Substituting (4.18) and
(4.19) into (4.17) yields

f1 =− α− α

b
z + (Q(z) + n1) sin z + n0z sin z + n0 cos z − b2 +M2 − 2α

2b
tan z − α

b
tan z

+
λ

2b
sin z tan z − λ

2b
sec z +

b2 +M2 − 2α

2b
ztan2z +

b2 +M2 − 4α

2b
(ln(1− sin z)

− ln cos z)(z sin z + cos z). (4.21)

According to the boundary conditions (4.14) and taking account of Q(0) = 0, we have

n0 = α+
λ

2b
, n1 =

b2 +M2 − 2α

b
, (4.22)
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λ =
1

2a(b sin 2b+ cos 2b)
(2abα+ (2b2 − 2ab2 − 2aM2 + 4aα− 4ab2α− 2abQ(−2b)) sin 2b

− 2abα cos 2b+ (ab2 + aM2 − 2aα+ 8ab2α) tan 2b+ (−2ab3 − 2abM2 + 4abα) tan2 2b

+ a(b2 +M2 − 4α)(cos 2b+ 2b sin 2b)(ln(1 + sin 2b)− ln cos 2b)). (4.23)

Hence, the solution of equation (4.11) is

f1 =− α− α

b
z + (Q(z) +

b2 +M2 − 2α

b
) sin z + (α+

λ

2b
)z sin z + (α+

λ

2b
) cos z

− b2 +M2 − 2α+ 2αz2

2b
tan z +

λ

2b
sin z tan z − λ

2b
sec z +

b2 +M2 − 2α

2b
ztan2z

+
b2 +M2 − 4α

2b
(ln(1− sin z)− ln cos z)(z sin z + cos z), (4.24)

where λ is given by (4.23). Finally, an asymptotic solution for the mixed injection for v2 ≥ v1 > 0 (i.e.
0 < a ≤ 1) is

f(y) = cos z + ε{−α− α

b
z + (Q(z) +

b2 +M2 − 2α

b
) sin z + (α+

λ

2b
)z sin z + (α+

λ

2b
) cos z

− b2 +M2 − 2α+ 2αz2

2b
tan z +

λ

2b
sin z tan z − λ

2b
sec z +

b2 +M2 − 2α

2b
ztan2z

+
b2 +M2 − 4α

2b
(ln(1− sin z)− ln cos z)(z sin z + cos z) +

b

a
sin 2b · e−aη}+O(ε2), (4.25)

where η = 1+y
ε and z = by − b.

Remark: We remark that v1 ≥ v2 > 0 (i.e. a ≥ 1), we can have the solution of format f0 =

cosh(dy − d), where d = ± cosh−1 a
2 and k0 = d2 = (cosh−1 a)2

4 . Since cosh(x) is an even function, the

solution for d = cosh−1 a
2 and d = − cosh−1 a

2 are the same, and it is also means that there is only one
solution of (4.7).

4.2. Asymptotic solution for mixed suction case

For the mixed suction case, assuming v2 ≤ v1 < 0 (i.e. 0 < a ≤ 1), the equation is the same as (3.1),
satisfying the condition (2.12). Correction terms may have to be introduced due to a possible boundary
layer near y = 1. Thus, f(y) and k are expanded as

f(y) = f0(y) + ε(f1(y) + g1(τ)) + ε2(f2(y) + g2(τ)) + · · · , (4.26)

k = k0 + εk1 + εk2 + · · · , (4.27)

where ε = − 1
R > 0, τ = 1−y

ε is the stretching transformation near y = 1 and gi(τ), i = 1, 2 · · · are
boundary layer functions (rapidly decay when y is away from y = 1). The corresponding boundary
conditions become

f0|y=1 = 1, f0|y=−1 = 1− α2 = a, f ′0|y=−1 = 0, (4.28)

f ′i−1|y=1 − ġi|τ=0 = 0, i = 1, 2, · · · , (4.29)

fi|y=−1 = 0, f ′i |y=−1 = 0, fi|y=1 + gi|τ=0 = 0, i = 1, 2, · · · , (4.30)
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Substituting (4.26) and (4.27) into (3.1) and collecting the same power of ε yield

ε0 : f ′20 − f0f ′′0 = k0, (4.31)

ε−1 :
...
g 1 + g̈1 = 0, (4.32)

ε1 : f0f
′′
1 − 2f ′0f

′
1 + f ′′0 f1 = α(yf ′′0 − 2f ′0)−M2f ′0 + f ′′′0 − k1, (4.33)

· · · . (4.34)

The above equations (4.31)-(4.33) subject to boundary conditions (4.28)-(4.30), respectively. It can be
easily obtained that the leading order solution is

f0 = a cosh(by + b), (4.35)

where b = 1
2 cosh−1 1

a and k0 = −(ab)2 = −1
4a

2(cosh−1 1
a)2.

Applying the similar method in the mixed injection case and solving (4.32) and (4.33), one obtains

g1 = −ab sinh 2b · e−τ , (4.36)

f1(z) =− α+
α

b
z − (S(z) +

M2 − b2 − 2α

b
) sinh z − µ

2b
cosh z − b2 −M2 + 2α+ 2αz2

2b
tanh z

− b2 −M2 + 2α

2b
z tanh2 z − 2bα+ µ− 2(b2 −M2 + 4α) tan−1 tanh z/2

2b
(z sinh z − cosh z),

(4.37)

where

S(z) =
1

b

∫ z

0
−αφsechφ+ αφ2sechφ tanhφ+ (b2 −M2 + 2α)φsechφ tanh2 φdφ, (4.38)

and

µ =b(1− a− 2α)− S(2b)− M2 − 2α

b
+
M2 − b2 − 2α− 8b2α

2b cosh 2b
+ α coth 2b+ (M2 − b2 − 2α)

· tanh 2b

cosh 2b
+

α

2 sinh b cosh 2b
+
M2 − b2 − 4α

b
arctan tanh b(coth 2b− 2b). (4.39)

Finally, an asymptotic solution of mixed suction for v2 ≤ v1 < 0 (i.e. 0 < a ≤ 1 ) is

f(y) = cosh z + ε{−α+
α

b
z − (S(z) +

M2 − b2 − 2α

b
) sinh z − µ

2b
cosh z − b2 −M2 + 2α+ 2αz2

2b

· tanh z − b2 −M2 + 2α

2b
z tanh2 z − 2bα+ µ− 2(b2 −M2 + 4α) tan−1 tanh z/2

2b
(z sinh z

− cosh z)− ab sinh 2b · e−τ}+O(ε2), (4.40)

where τ = 1−y
ε and z = by + b.

Remark: we remark that v1 ≤ v2 < 0 (i.e. a ≥ 1), a ≥ 1, f0 = a cos(dy + d) is a leading order
solution, where b = 1

2(cos−1 1
a + 2nπ) and k0 = (ab)2 = 1

4a
2(cos−1 1

a + 2nπ)2.

5. Asymptotic solution for the case of small Reynolds R and small expansion ratio α
case

For the small injection or suction and small expansion ratio case, it is reasonable to use the method
of regular perturbation expansions to construct the asymptotic solution. One, thus, may treat R as a
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perturbation parameter. The solution may be expanded as

f = f0 +Rf1 +R2f2 + · · · . (5.1)

Differentiating (2.11) with respect to y, one obtains

f iv + α(yf ′′′ + 3f ′′) +R(f ′′′f − f ′′f ′)−M2f ′′ = 0 (5.2)

satisfying the boundary condition (2.12). Substituting (5.1) into (5.2) and equating the like powers of R
yield

f iv0 + α(yf ′′′0 + 3f ′′0 )−M2f ′′0 = 0, (5.3)

f iv1 + α(yf ′′′1 + 3f ′′1 )−M2f ′′1 + f ′′′0 f0 − f ′′0 f ′0 = 0. (5.4)

The corresponding boundary conditions become

f0|y=1 = 1, f ′0|y=1 = 0, f0|y=−1 = 1− α2, f ′0|y=−1 = 0, (5.5)

f1|y=1 = 0, f ′1|y=1 = 0, f1|y=−1 = 0, f ′1|y=−1 = 0. (5.6)

We consider the case where α is also small and take it as the secondary perturbation parameter. Then,
f0 and f1 can be further expanded in the form

f0 = f00 + αf01 +O(α2), (5.7)

f1 = f10 + αf11 +O(α2). (5.8)

Substituting (5.7) into (5.3) and collecting like powers of α yield

f
(iv)
00 −M

2f ′′00 = 0, (5.9)

f
(iv)
01 −M

2f ′′01 + yf ′′′00 + 3f ′′00 = 0, (5.10)

with the boundary conditions

f00|y=1 = 1, f ′00|y=1 = 0, f00|y=−1 = 1− α2, f ′00|y=−1 = 0, (5.11)

f01|y=1 = 0, f ′01|y=1 = 0, f01|y=−1 = 0, f ′01|y=−1 = 0. (5.12)

Thus, the results are

f00 =
α2(sinhMy − yM coshM)

2(sinhM −M coshM)
+

2− α2

2
, (5.13)

f01 =D/(8M)[y2(M coshM − sinhM)M sinhMy − y((M coshM − sinhM) coshMy

+ coshM sinhM +M cosh 2M − 2M)− (M coshM + 2 sinhM)M sinhMy], (5.14)

where D = α2(M coshM − sinhM)−2.
Substituting (5.8) and (5.7) into (5.4) and equating equal powers of α, the leading order equation becomes

f
(iv)
10 −M

2f ′′10 + f ′′′00f00 − f ′′00f ′00 = 0 (5.15)

with the boundary condition

f10|y=1 = 0, f ′10|y=1 = 0, f10|y=−1 = 0, f ′10|y=−1 = 0. (5.16)
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The solution of f10 is

f10 =Gy2[2α2M
2 sinh 2M sinhMy(M coshM − sinhM)] +MGy[8(α2 − 2)(M coshM − sinhM)2

· sinhMy + 28α2 coshM(M coshM − sinhM) coshMy + α2(14 sinh 2M coshM − 2M

· cosh 3M − 26M coshM)] + 2G{4(α2 − 2) sinh2M [M cosh2M − coshM(M coshMy

+ sinhM) + sinhM(coshMy +M sinhM)]−M2 sinh 2M [(α2 − 2)(2 coshM coshMy

+ cosh 2M)− 3α2(2 sinhM sinhMy + 1) + 6] + 2M3 cosh2M [2(α2 − 2)(coshM coshMy

− 1)− α2 sinhM sinhMy]}, (5.17)

where G = α2(64M sinhM)−1(M coshM − sinhM)−3. Finally, the solution becomes

f(y) =α2(sinhMy − yM coshM)/(2p) + (2− α2)/2 + αα2/(8Mp2)[y2p− sinhM)M sinhMy

− y(p coshMy + coshM sinhM +M cosh 2M − 2M)− (M coshM + 2 sinhM)M

· sinhMy] +Rα2/(64p3M sinhM){y2[2α2M
2 sinh 2M sinhMyp] +My[8(α2 − 2)p2

· sinhMy + 28α2 coshMp coshMy + α2(14 sinh 2M coshM − 2M cosh 3M − 26M

· coshM)] + 2{4(α2 − 2) sinh2M [M cosh2M − coshM(M coshMy + sinhM)

+ sinhM(coshMy +M sinhM)]−M2 sinh 2M [(α2 − 2)(2 coshM coshMy

+ cosh 2M)− 3α2(2 sinhM sinhMy + 1) + 6] + 2M3 cosh2M [2(α2 − 2)(coshM

· coshMy − 1)− α2 sinhM sinhMy]}}, (5.18)

where p = M coshM − sinhM .

6. Comparison of the asymptotic and numerical solutions

Table 6.1: Comparison of f ′′(−1) and f ′′(1) for large suction R

M α2 α R
f ′′(−1) f ′′(1)

Asymptotic Numerical Asymptotic Numerical
results results results results

1.0 1.87 -1.5 -50 40.9395 40.8663 -47.4089 -47.4060
1.0 1.95 -2.0 -67 62.9581 62.9526 -66.3744 -66.3825
1.1 1.73 -3.0 -88 56.8609 56.8746 -78.2435 -78.2997
3.5 1.81 2.0 -90 62.9612 62.9067 -79.0131 -79.0398
6.5 1.50 3.5 -99 32.8125 32.9871 -71.6250 -71.9587
3.8 1.77 4.0 -110 70.1684 70.0583 -93.2607 -93.2641
2.5 1.60 -8.0 -135 69.7067 69.9336 -114.1870 -114.3161
6.0 1.50 3.0 -150 52.3125 52.3826 -110.2500 -110.4426

20.0 1.70 5.0 -150 83.6582 86.8943 122.8371 -125.1102
30.0 1.80 -7.0 -150 113.0850 119.4959 -140.6930 -145.8802
20.0 1.70 5.0 -175 98.5332 101.2919 -144.0871 -146.0277
30.0 1.80 -7.0 -175 131.0850 136.6659 -163.1930 -167.6935

Terrill[15] pointed out that the comparison of f ′′(1) was found to be the most effective way. Hence, in
this section we will make comparison of the asymptotic and numerical results of f ′′(−1) and f ′′(1) which
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are proportional to the skin-friction at the walls. The numerical solutions for (2.11) and (2.12) can be
readily obtained by a matlab boundary value problem solver bvp4c.

For the large suction case, it can be seen from Table 6.1, the analytical results agree well with the
numerical results for arbitrary constants α2 and α for M2/R ∼ O(ε). Nevertheless, it is clear from the
last four lines of the Table 6.1 that asymptotic results deteriorate when M2 becomes of the same order
as that of the suction Reynolds number. Hence, we need to use the asymptotic solution for the case of
M2/R ∼ O(1). We find that the large magnetic field has noticeable effect on the solution, because the
parameter r has went into the terms of O(ε)2. As shown in Table 6.2, when using the solution (3.40), the
accuracy is largely improved compared with Table 6.1 for large M .

Table 6.2: Comparison of f ′′(−1) and f ′′(1) for large suction R and M

M α2 α R
f ′′(−1) f ′′(1)

Asymptotic Numerical Asymptotic Numerical
results results results results

20 1.7 5 -150 86.8963 86.8943 -125.1038 -125.1102
20 1.7 5 -175 101.3087 101.2919 -146.0300 -146.0277
30 1.8 -7 -150 119.835 119.4959 -146.0925 -145.8802
30 1.8 -7 -175 136.8707 136.6659 -167.8211 -167.6935
20 1.7 5 -213 123.4236 123.3904 -177.9834 -177.9750
30 1.8 -7 -213 188.9365 188.8691 -208.9649 -208.9114

For the mixed cases, as shown in Table 6.3 and Table 6.4, the asymptotic solutions realize a good
agreement with the numerical solutions. Meanwhile, tabulated values indicate that the skin-friction is
increasing with the increasing R.

Table 6.3: Comparison of f ′′(−1) and f ′′(1) for mixed injection

M α2 α R
f ′′(−1) f ′′(1)

Asymptotic Numerical Asymptotic Numerical
results results results results

2 0.2 -3 50 7.66931 7.8352 -0.1244 -0.1256
2 0.2 -3 70 10.7495 10.9157 -0.1184 -0.119
2 0.2 -3 90 13.8335 14.0000 -0.1151 -0.1155
2 0.2 -3 110 16.9193 17.0860 -0.1129 -0.1132
2 0.2 -3 130 20.0060 20.1729 -0.1115 -0.1117
2 0.2 -3 150 23.0933 23.2603 -0.1104 -0.1106
3 0.1 2 50 4.3808 4.2281 -0.0541 -0.0541
3 0.1 2 70 6.1493 5.9912 -0.0531 -0.0531
3 0.1 2 90 7.9181 7.7570 -0.0526 -0.0526
3 0.1 2 110 9.6872 9.5242 -0.0523 -0.0523
3 0.1 2 130 11.4564 11.2920 -0.0521 -0.052
3 0.1 2 150 13.2256 13.0602 -0.0519 -0.0519

At this juncture, it is useful to note that if there is no magnetic field (i.e.M = 0) and the physic model
is symmetric (i.e.α2 = 2 ), the solution of small R and small α can be reduced to the solution given by
Majdalani and Zhou[9]. Furthermore, it is clear from Table.6.5 that the asymptotic results have a good
match to the numerical results and the accuracy is increasing with the decreasing of R and α.
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Table 6.4: Comparison of f ′′(−1) and f ′′(1) for mixed suction

M α2 α R
f ′′(−1) f ′′(1)

Asymptotic Numerical Asymptotic Numerical
results results results results

1 0.06 -3.7 -15 0.0485 0.0527 -0.9107 -0.9342
2 0.06 -3.7 -15 0.0527 0.0583 -0.9194 -0.9018
1 0.13 1.2 -19 0.0599 0.0606 -2.4275 -2.5332
2 0.13 1.2 -28 0.0662 0.0665 -3.6532 -3.6001
2 0.24 2.8 -39 0.1056 0.1065 -9.6410 -9.5938
2 0.20 -1.5 -50 0.0949 0.0955 -8.7021 -8.5348
1 0.36 0.8 -55 0.1632 0.1634 -21.1974 -21.3687
2 0.54 1.7 -67 0.2255 0.2259 -41.4631 -41.1129
2 0.08 -2.1 -75 0.0439 0.0440 -6.0502 -5.9984
1 0.49 0.9 -89 0.2095 0.2097 -49.0864 -49.3811

Table 6.5: Comparisons of f ′′(−1) and f ′′(1) for small R and small α

M α2 α R
f ′′(−1) f ′′(1)

Asymptotic Numerical Asymptotic Numerical
results results results results

3 1.9 0.01 0.01 4.2349 4.2349 -4.2342 -4.2342
3 1.8 0.02 0.03 4.0035 4.0035 -3.9996 -3.9996
5 1.5 0.04 0.06 4.6636 4.6636 -4.6495 -4.6497
7 1.3 0.10 0.09 5.2665 5.2667 -5.2426 -5.2430
9 1.0 0.15 0.19 5.0262 5.0263 -4.9727 -4.9735

12 0.8 0.22 0.28 5.2042 5.2043 -5.1309 -5.1319
15 0.6 -0.35 -0.30 4.8575 4.8576 -4.9250 -4.9260
20 0.4 -0.40 0.29 4.2726 4.2730 -4.2238 -4.2238
13 0.3 0.50 -0.38 2.0482 2.0490 -2.1007 -2.1007
8 0.1 -0.30 0.40 0.4765 0.4768 -0.4548 -0.4548
8 0.1 0.50 0.60 0.4580 0.4581 -0.4255 -0.4254
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7. Conclusion

In this paper, we construct the similarity solutions of asymmetric channel flow with porous retractable
walls and a transverse magnetic field. First, one asymptotic solution with the linear leading order is
obtained for the large suction case, and it is found that the skin-friction near the walls increases with the
increasing magnetic field intensity. Secondly, we obtain asymptotic solutions for the flow in a channel that
one wall is with injection and the other is with suction. All above asymptotic solutions are constructed
for the most difficult large Reynolds number cases. Finally, when the wall contraction or expansion is
weak and the injection or suction is small, one asymptotic solution is obtained by the two-parameter
perturbation method. All asymptotic solutions are verified by numerical solutions obtained by a Matlab
boundary value problem solver bvp4c.
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