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Abstract

The self-similarity solutions to the Navier-Stokes equations are constructed for an incompressible
laminar flow through a uniformly porous channel with retractable walls under a transverse
magnetic field. The flow is driven by the expanding or contracting walls with different
permeability. The velocities of the asymmetric flow at the upper and lower walls are different in
not only the magnitude but also the direction. The asymptotic solutions are well constructed
with the method of boundary layer correction in two cases with large Reynolds numbers, i.e.,
both walls of the channel are with suction, and one of the walls is with injection while the other
one is with suction. For small Reynolds number cases, the double perturbation method is used to
construct the asymptotic solution. All the asymptotic results are finally verified by numerical
results.

Keywords: laminar flow, asymmetric flow, asymptotic solution, porous and retractable channel,
magnetic field

1. Introduction

The studies of laminar flow through porous channels with retractable walls have received extensive
attention in the fields of fluid and mathematics due to their close connections with massive biological
and engineering problems, e.g., blood flow in vessels, nutrition liquid transport in biological organisms,
mass transfer among blood, air, and tissue, uniformly distributed irrigation, and natural transpiration.
The electrically conducting viscous fluid in a channel with permeable walls can be used to simulate the
biological problems. Taking blood flow in vessels as an example, when the blood is considered as an
electrically conducting fluid, Higashi et al.[1] showed that the magnetic field has a significant effect on
the vascular system based on the experimental investigation.

Berman [2] analyzed the two-dimensional steady laminar flow of a viscous incompressible fluid through
a porous channel with uniform injection or suction by full using the symmetry to simplify the model for
the first time, and reduced the Navier-Stokes equations to a fourth-order nonlinear ordinary differential
equation with a parameter R (see Section 2 for its definition) and four boundary conditions. Numerous
studies about the laminar flow in a channel with permeable walls followed. Yuan [3] derived an asymptotic
solution for the large injection case. Terrill [4] improved the solution by considering the inner layer. Sellars
[5] and Terrill [6] investigated the large suction cases, and derived an asymptotic solution. Afterwards,
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in order to precisely simulate the blood flow, Uchida and Aoki [7] investigated the unsteady laminar flow
driven by a single contraction or expansion of the channel walls. Goto and Uchida [8] studied the laminar
flow in a semi-infinite porous pipe, the radius of which varied with time. Majdalani et al.[9] studied
the laminar flow between slowly expanding or contracting walls, and obtained the similarity solution to
describe the transport of biological fluids. Majdalani and Zhou [10] investigated the large injection and
suction cases in a channel with retractable walls, and obtained the asymptotic solutions. For more details,
one may refer to Asghar et al.[11], Xu et al.[12], and Dauenhauer and Majdalani [13].

Suryaprakasrao [20] investigated the laminar flow of an electrically-conductive viscous fluid in a porous
channel under a transverse magnetic field for the first time, and obtained the asymptotic solution for
the case with a small suction Reynolds number and small magnetic field number. Terrill and Shrestha
[21, 22, 23] and made further extension of Suryaprakasrao’s work, and obtained the asymptotic solutions
for large suction and injection Reynolds numbers and all values of the Hartamnn number. Based on these
works, investigators began to take account of the wall motion [24].

The asymmetric laminar flow caused by different wall permeability can be traced back to Proudman
[14] , who proposed the asymmetric flow for the first time. Terrill and Shrestha [15, 16, 17] and Shrestha
and Terrill [17] extended Proudman’work, and obtained a series of asymptotic solutions with the method
of matched asymptotic expansions for large injection, large suction, and mixed cases. Cox [18] and King
and Cox [19] considered the problem of steady and unsteady flow in a channel with only one porous wall.
Zhang et al.[26] studied the asymmetric flow analytically and numerically. However, these asymmetric
work did not consider the cases with wall motion and a transverse magnetic filed in a channel.

In this paper, we will investigate the general asymmetric flow of an incompressible viscous fluid through
a porous and retractable channel with a transverse magnetic field, and present the asymptotic solutions.
The paper is arranged as follows. In Section 2, the formulation of the problem is presented by reducing
the Navier-Stokes equations into a nonlinear ordinary differential equation via a similarity transformation.
In Section 3, the effects of the magnetic field on the solution is examined, and the asymptotic solutions
for different orders of the Reynolds and Hartman numbers are obtained. In Section 4, the asymptotic
solutions for large Reynolds numbers in the case that one wall of the channel is with injection while the
other wall is with suction are constructed. In Section 5, an asymptotic solution for the case of slowly
contracting and weak permeability is presented. In Section 6, all the obtained solutions are verified by
the numerical solutions. The summarization is given in Section 7 finally.

2. Mathematical formulation

The equations of the continuity and momentum for the unsteady laminar flow of an incompressible
viscous and electrically conducting fluid through a porous and retractable channel with a transverse
magnetic field are

V.- V=0, (2.1)

and
1 1
g+(V.V)V:—pr+VV2V—|—pJ><B, (2.2)

where J and B are given by the Maxwell equations

V x H=4rnJ, (2.3)
Vx E=0,
V.- B=0, (2.5)
and Ohm’s law
J=0(E+ V x B). (2.6)
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In the above equations, B = pu,, H. The symbol J represents the current density, E the electric field,
H the magnetic field, v the viscosity of the fluid, o the electrical conductivity and wu,, the magnetic
permeability. An elongated rectangular channel exhibiting a sufficiently large aspect ratio of width L
to height h(t) and with one closed end is here considered. Despite the channel’s finite body length, it
is reasonable to assume that the channel is semi-infinite length in order to neglect the influence of the
opening at the end[7]. Permeability of both walls which expand or contract uniformly at a time-dependent
rate h(t) is different. Assume that the fluid velocity at the lower wall is —v; and the upper wall is —wvs.
Furthermore, a constant magnetic field of strength Hj is applied perpendicular to the walls. It is assumed
that there is no external electric field and the effect of magnetic and electric field produced by the motion
of the electrically conducting fluid can be negligible[20, 21, 22]. With these assumptions the magnetic
term J x B of the body force in (2.2) reduces to

Jx B=—0By*V, (2.7)

where By = pmHo. Let T and y be the co-ordinates measured along and perpendicular to the flow
direction respectively, u and v be the velocity components (i.e.V = (u,v)) in the ¥ and y directions
respectively.

The boundary conditions satisfied by the flow are

u(z,—h) =0, v(Z,—h) = —v; = —Ajh,
u(Z,h) =0, v(Z, h) = —vg = —Ash, (2.8)

where A1 and A are constant measures of the lower and upper wall permeabilities, respectively. We shall
introduce a stream function[10]

VT
¢ = ?F(yvt)a (2.9)
where y = y/h is the dimensionless height. Then the velocity components are given by
0o vx 0 v
=~ =_2"CF, =——L=——F 2.10
b oy h2Y v 0T h (2.10)

so that the continuity equation (2.1) is naturally satisfied. Assuming |vg| > |v1|, without loss of generality,
and substituting (2.10) into (2.1)-(2.2) give rise to

"+ alyf" +2f) + R(ff" = f?) = M?f' = K(R), (2.11)
with the boundary conditions
f(-1)=1-as, f(-1)=0, f1)=1, f/(1)=0, (2.12)

where « is the wall expansion ratio defined by a = % ( positive for expansion and negative for contraction),
R = % is the Reynolds number (positive for injection and negative for suction), M = ,umHoh(;LV)% is
the Hartman number, as =1 — Z—; is an asymmetric parameter and K is an integration constant. Similar

derivations for transforming the Navier-Stokes equation into (2.11) can be referred to Majdalani and
Zhou[9]. The fluid flow through the channel is symmetric about the centre line of the channel for ap = 2.

In this paper, we will mainly focus on the asymmetric flow.



3. Asymptotic solutions for large suction case

In this section, we will consider the case that both walls of the channel are with large suction and the
suction velocities on the upper and lower wall are different. An asymptotic solution will be constructed
for &« = O(1) and M? = O(1) as R — —oo and for a = O(1) and M? = O(R) as R — —oo, respectively.

3.1. Asymptotic solution for large suction Reynolds number R

For the large suction case, assuming v; > 0 > vy, by treating e = —% > ( as a perturbation parameter,
(2.11) can be written as

ef" + ea(yf” + 2f/) . (ff” _ f/2) B esz/ =k, (3.1)

where e K(R) = k, which is the equation to be solved for the suction case subject to the boundary
conditions (2.12). If the channel wall is with large suction, there exists a boundary layer near the upper
wall for M = 0 and ay = 2[10]. Motivated from their thinking, there may be a boundary layer near
both walls and the correction near both walls may be needed. Therefore, the method of boundary layer
correction[25] is used to construct the asymptotic solution. Hence, the solution can be expanded as
following form

f = foy) +e(fr(y) + g1(r) + ha(m) + € (fa(y) + g2(7) + ha(n)) + -+, (3.2)

and the integrating constant k£ can be written as

k=ko+eky + kg + -, (3.3)

1+y

where 7 = 1%3/ and n = are the stretching transformations near the wall dimensionless height y = 1
and y = —1, respectively, and ¢;(7) and h;(n), i = 1,2,3---, are boundary layer functions (g;(7) and
hi(n) rapidly decay when y is away from y = 1 and y = —1, respectively).

Substituting (3.2) and (3.3) into (3.1) and equating the equal powers of e yield

60 : (/)2 - fOf” = ]{10 (34)
e TRl = 2f0f1 + £ fr = alyfl +2f5) = MPfo + i — ka

ol = 2003+ o T = oyl 2) = MPSL S = S~ ke

e G+ (DG =0 (3.7)
G+ fo(D)ige = (a — ()G + fo(1)Ti1 — 9151 — 2£5(1)g1 + G2 =0

et — fo(=Dh1 =0 (3.9)
€ ha — fo(=1)ha = (fr(—1) + a)hy + f(l)(—l)nﬁl + hihy — 2f6(—1)i11 — =0 (3.10)

where f/, g and h denote the derivatives with respect to y, 7 and 7, respectively, and we have used f;(y) =
fill—er) = fi(l)=er f{(1) 452 f{'(1)+-- - and fi(y) = filen—1) = fi(=D)+enf{(=1)+5E0° [ (=1)+- -,
i=0,1,2---, and g;(7)h;(n) is exponentially small (considering them approximately as zero in the rest
of the section, j = 1,2---). By substituting (3.2) into (2.12), the boundary conditions to be satisfied by



fi(y), gi(7) and h;(n) at y=1or7=0and y = —1 or n = 0 are

Joly=1 =1, foly=1=1— 02 =a, (3.11)
fi/—1|y:1_gl"‘l':0:07 221527 ) (312)
fi,—1|y=*1+hi|77=0:0? 1=1,2,---, (3'13)
fily=1 + gilr=0 =0, fily=—1+ hilp=0 =0, i =1,2,--, (3.14)
where a = ! (i.e.—1 < a < 0). One solution of (3.4) with the boundary condition (3.11) is
1-a 1+a
= 1
fo 5 YT (3.15)
and ko = %. Thus, the boundary condition (3.12) becomes
. 1-a
g1lr=0 = foly=1 = 5 (3.16)
The boundary layer solution of (3.7) satisfying the condition (3.16) is
-1
gi="—e. (3.17)
2
Also, the boundary layer solution of (3.9) satisfying the condition (3.13) is
a—1
b= ==, (3.18)
Substituting (3.15) into (3.5) gives rise to
1 " / 1 2
5((@ - ly—a-1fi +(1—-a)f] = 5(204 —M*)(a—1)— k. (3.19)
The corresponding boundary conditions from (3.14) are
l1-a 1—a
f1|y=1 = —gilr=0 = 5 f1|y=71 = —h1|n=o = 2a " (3.20)
Hence, the solution of fi subject to (3.20) is
—1 2( 2 2 3 2 2
f :16a(a2 Y {l(a — 1)*(a® 4+ 2M*a — 4aa — 2a + 1) — 4a(a — 1)k1]y° — 3[(a” — 1)(a
+2M?a — 4aa — 2a + 1) — da(a + Dki]y? + [(a — 1)*(3a* — 2M?a + 4aa + 6a + 3)
4a(a — 1)ki]y + [(a® — 1)(7a® + 6M?a — 120a — 2a + 7) — 12a(a + 1)k1]}, (3.21)

where the parameter & is still unknown and to be determined next.
Substituting (3.15) and (3.21) into (3.6), one can obtain the expression of f;. We find that one term of

fais
(M? — 40)[(a® 4+ 2M?a — 4aa — 2a + 1)(a — 1) — 4ak;]
8(a—1)3(a®>+a+1)a

(1—a)y+a+1)3log((1 —a)y+a+1), (3.22)

which is a secular term. Thus, the term must be zero and then k; = (a;al) (a% + 2M?%a — 4aa — 2a + 1).




The expression of f; becomes
(a—1)2 1—q?

h=——p"v+— (3.23)
Then, according to (3.12), the boundary condition for g, becomes
) —(a —1)2
d2lr=0 = fily=1= (4a)' (3.24)
Substituting (3.17) into equation (3.8), we obtain
1—
92 = —3 ¢ [(a® — a)7% 4 2(3a® — 2aa — 3a)T + 6a* — 4aa — 8a + 2)e™". (3.25)
a
Similarly, the solution of hy becomes
a—1 3 .2y,.2 2 a
hy = W[—(a —a”)n° + 2(2aa + 3a — 3)an + 2(a* — 2ca — 4a + 3)]e. (3.26)
a
Hence, the boundary conditions for f from (3.14) are
a—1
fg‘yzl = —g2|7—:o = ( 1a )(3(12 — 2aa — 4a + 1), (3.27)
l1—a
Plyemr = ~holyeo = L= (a2 200 — 1a) (3.28)
Substituting (3.15) and (3.23) into (3.6) yields
1 " / (a — 1)2 2 2
5(((1 —ly—a—-1f+(1—a)fs+ a2 (a® + (AM* —8a — 2)a + 1) = ko. (3.29)

One obtains
a—1

3 [(3a* — (4 + 20)a® + 2a* — (4 4+ 2a)a + 3)y + (a® — 1)(3a® — (4 + 2a)a + 3)]? (3.30)

fo=

and ko = — (‘11533)2 (6a*— (9+4a)a® — (4M? —8a—6)a® — (9+4a)a+6) which is determined by eliminating

the Secular term of f3. Finally, the asymptotic solution for the large suction case of y € [—1,1] is

) :1;ay+ 1 —;—a +€[_(a ;a1)2y+ 1 ;aaQ N a;le_T+ a2—a16an] +€2{%[(3a4 _u
+2a) - a® +2a® — (44 2a)a + 3)y + (a® — 1)(3a® — (4 + 2a)a + 3)] + E;La[(GQ —a)7?
+2(3a® — 2aa — 3a)T + 6a* — 4aa — 8a + 2)e” " + a8;31 [—(a® — a®)n* + 2(2aa + 3a
—3)an + 2(a® — 2ca — 4a + 3)]e™} + O(€%), (3.31)

where 7 = kTy and n = HTy

3.2. Asymptotic solution for large suction Reynolds number R and large Hartmann number M

It is clear from (3.31) that the effect of magnetic field on channel flow can be negligible, hence, in this
section, we will consider the case of large magnetic field, which may have noticeable effect to the flow.
When the suction Reynolds number R and the Hartmann number M are both large and we take the same
order of effect on the flow through the channel, there may exist a combined viscous suction and magnetic

boundary layer at both channel walls. Hence, we assume r = —M72 > 0 and r ~ O(1) and choose € = —

6



as the perturbation parameter. The method used in Section 3.1 can be applied to this case. Equation
(2.11) can be written as

ef" +ealyf’ +2f) — (Ff" — f/2) +rf =k, (3.32)

where e K(R) = k. A solution of (3.32) satisfying the corresponding boundary conditions (2.12) can be
obtained by using the similar procedure as in the large suction case. Hence, the expressions of f;, g; and
h; are listed directly below in order to avoid tedious calculations and duplicatious:

1—a 14+a
fo=——y+—— (3.33)
 (a—1)? 1—q?
fi= P + 10 (3.34)
-1
fo = “8a3 [(3a*+(2r—2a—4)a®+2a* — (44-2a)a—2r+3)y+3a* +(2r —2a—4)a® 4+ (4+2a)a+2r—3], (3.35)
-1
g =" (3.36)
2
a—1
hy = ——e", (3.37)
-1
go = “8a [—(a® — a)7® — 2(3a® + (2r — 20 — 3)a)T — 2(3d® + 2(r —a — 2)a+ 1)]e 7, (3.38)
a—1 3 2y, 2 2 2 a
hy = W[_< —a”)n* +2((3 4 2a)a” + (2r — 3)a)n + 2(a” — (4 + 2a)a — 2r + 3)]e™". (3.39)

Then the asymptotic solution for this case is given as follow:

l—a l1+a (a—1)? 1—a? a-1 _, a—1 g oa—1. 4
_ N 3
F)=—5—y+ —5— tel-—p—y+ — =+ e+ =" + {5 [(3a
+ (2r — 2a — 4)a® + 2a® — (4 + 20)a — 2r + 3)y + 3a* + (2r — 2a — 4)a® + (4 + 20)a
-1
a8 [—(a® — a)m? — 2(3a® + (2r — 2a — 3)a)T — 2(3a®> + 2(r — a — 2)a
a
-1
a8 3 [—(a® — a®)n? +2((3 + 2a)a® + (2r — 3)a)n + 2(a® — (4 + 2a)a — 2r
a

+ 3)]e™} 4 O(€®), (3.40)

+2r — 3]+

+1))e T+

where 7 = =¥ n = % and -1 < @ < 0. From (3.40), we know that the large magnetic field has

[ €
noticeable effect on the flow.

4. Asymptotic solutions for mixed cases

For the asymmetric model, we will consider the case where the injection and suction are mixed at
the upper and lower walls. The mixed cases are either mixed injection or mixed suction for the porous
channel flow which was considered by Terril [16]. The flow governed by (2.11) is of mixed injection for
positive values v1 and vo, while the flow is of mixed suction for negative values of v1 and vs. Both of the
asymptotic expressions are presented in the subsequent subsections respectively.



4.1.  Asymptotic solution for the mixed injection case

For the mixed injection case, assuming vy > v; > 0 (i.e. 0 < a < 1), the equation, satisfying the
condition (2.12), can be written as

ef///+6a(yf//+2f/)+(ffll_f/2)_€M2f/:k7 (4.1)

where € = % > 0 can be treated as a small parameter and k is an arbitrary constant.

The wall dimensionless height y = —1 is with suction which may produce the boundary layer, while
the other wall y = 1 is with injection. One correction term may have to be introduced due to the presence
of boundary layer at y = —1. Thus, f(y) and k are expanded as

Fy) = foly) + e(fi(y) + ha(m) + €(fa(y) + ha(m) + -+, (4.2)
k=ko+ek1+€ko+---, (4.3)
where 1 = HTy is the stretching transformation near y = —1 and h;(n),7 = 1,2--- are boundary layer

functions (rapidly decay when y is away from the wall y = —1). By substituting (4.2) into (2.12), the
boundary conditions become

foly=1 =1, fily=1=0, foly—1=1-az=aq, (4.4)
fz‘/—1|y:—1+hi’?7:0:0’ i=1,2,---, .
fily=1 =0, fily=1 =0, fily=—1+ hily=0=0, i =1,2,---, (4.6)

Substituting (4.2) and (4.3) into (4.1) yields, at O(1),

fofg = f&¢ = ko (4.7)

subject to (4.4).
It can be easily verified that the leading order solution is fo = cos(by — b) which is a periodic function,

— -1 2
then, we obtain b = Coslf‘”'m and kg = —b? = —w, n = 0,1,2---. Thus, we obtain
many solutions of (4.7). f{ which is proportional to the streamwise velocity u does not change sign
for n = 0. However, f) does change sign at least three times for n = 1(i.e. the streamwise fluid

flow direction will change at least three times). f does change sign at least five times for n > 2,
these phenomena may not occur physically. Laboratory experiment on porous pipe without expansion or
contracting has been conducted by Wageman and Guevara [27] who obtain zero order asymptotic solution

fo= (7]?” sin (2n+21 )mX = 0,1,2... for injection case. The only solution that has been experimentally
observed was that case n = 0 in Guevara’s work. Meanwhile, Proudman[14] pointed out that f can have
at most one zero which is common to any combination of signs of v; and wve for the reduced solution.
However, there is at least two zeros for n > 0. Therefore, there must be n = 0.

Now we consider fy = cos(by — b) as the leading order solution. When the terms of O(e™!) are
collected, the equation for hy becomes

h1+ fo(—l)ﬁl =0, (4.8)
and satisfies the boundary condition (4.5)
hily=0 = — fbly=—1 = —bsin 2b. (4.9)

Hence, the solution A is

b
hy = ; sin2b - e . (4.10)



When terms of O(e) are collected, the differential equation for f; becomes

fofl' = 2fofi + fo fr = = fo" — alyfy +2f5) + M>fo + k. (4.11)

The boundary conditions (4.6) are

b .
fily=1 =0, fily=1 =0, fily=—1 = —hi|p=0 = ——sin 2b. (4.12)

To simplify the equation, let z = by — b. Then, (4.11) can be written as

beos zf] + 2bsinzf] —beoszf1 = (b+ z)acos z + (2a — M?* — b?)sinz + )\, (4.13)
where ’ denotes the derivative with respect to z and A = %1, and the boundary conditions become
/ b .
filz=0 =0, fil:=0 =0, fil.=—2p = — sin 2. (4.14)

To construct the solution of (4.13), start with the corresponding homogeneous equation
beos z f1y, + 2bsin z f];, — bcos z fi, = 0. (4.15)
We can easily obtain its solution
fin = Pisinz + Py(zsinz + cos 2), (4.16)

where Py and P; are two arbitrary constants. Applying the method of variation of parameters, we look
for the solution of (4.16) in the terms of

f1 = Pi(2)sinz + Py(z)(zsin z 4 cos z). (4.17)

Through the standard process, it is obvious that

1
Py = Q—b[(b2+M2—4a)(ln(1—sinz)—lncos 2) +sec? z(b? 4+ M? —2a) sin z — A — 2a(b + 2) cos z + (b*)] +no,
(4.18)
1

P = %(—Z(b2 + M? — 20 — baz) sec z + Azsec? z + Atan z) + Q(2) + n1, (4.19)

where 1 g
Q(z) = %22 secz + - / (b + M? + a)psec d — (b? + M? — 2a)¢psec® ¢pdo, (4.20)

0

and ng and n; are constants to be determined using the boundary conditions. Substituting (4.18) and
(4.19) into (4.17) yields

b2 + M? — 2

f1:—a—%Z—F(Q(z)+n1)sinz+nozsinz+nocosz—Ttanz—%tanz
+>\ ot A +b2—|—M2—2a can? +b2+M2—4a(1 (1 sinz)
—sinztanz — —secz + —————ztan“z + —————(In(1 — sin 2z
gp TS T gy 2 2
—Incosz)(zsinz + cos z). (4.21)

According to the boundary conditions (4.14) and taking account of Q(0) = 0, we have

_b2+M2—2a

; , (4.22)

n0:a+?b, n1



1

= 2 2b? — 2ab? — 2aM? + dac — dab’a — 2abQ(—2b)) sin 2
A 2a(bsin b+ cos 2b)( aba + (2b ab aM?® + 4ac — 4ab” o — 2abQ(—2b)) sin 2b
— 2abacos 2b + (ab?® + aM? — 2ac + 8ab*a) tan 2b + (—2ab® — 2abM? + 4aba) tan? 2b
+ a(b® + M? — 4a))(cos 2b + 2bsin 2b)(In(1 4 sin 2b) — In cos 2b)). (4.23)

Hence, the solution of equation (4.11) is

b2+ M? -2 A A
f1:—a—%z+(Q(z)+¥)sinz+(a+Q—b)zsinz—i—(a%-?b)cosz
b? + M? — 20 + 2a2” A A b2+ M? -2
vt 2ba+ az tanz—l—%sinztanz—%secz—i—%ztan%
b+ M?—4
+ %(ln(l —sinz) — Incos z)(zsin z + cos z), (4.24)

where \ is given by (4.23). Finally, an asymptotic solution for the mixed injection for vy > v1 > 0 (i.e.
0<a<l)is

b2+ M? —2 A A
f(y):cosz—i-e{—a—%z—l—(Q(z)+¥)sinz+(a+%)zsinzﬁ—(a—k%)cosz
2 A2 _9 20022 24 M2 -2
0 2bOé+ az tanz+2%sinztanz—%secz+b+2—bazztan2z
+b2+M2—4a
2b

b
(In(1 —sinz) — Incos z)(zsinz + cos z) + o sin2b - e~} + O(€?), (4.25)

wheren:HTy and z = by — b.
Remark: We remark that v; > vy > 0 (i.e. a > 1), we can have the solution of format fy =

cosh(dy — d), where d = i% and kg = d*> = M. Since cosh(z) is an even function, the

cosh~la __cosh~la
5 and d = 5

solution for d = are the same, and it is also means that there is only one

solution of (4.7).

4.2.  Asymptotic solution for mixed suction case

For the mixed suction case, assuming vo < v; < 0 (i.e. 0 < a < 1), the equation is the same as (3.1),
satisfying the condition (2.12). Correction terms may have to be introduced due to a possible boundary
layer near y = 1. Thus, f(y) and k are expanded as

F) = foy) +e(fi(y) + 91(7)) + €(faly) + ga(r)) + -+, (4.26)
k=ky+eki +eko+---, (4.27)
where ¢ = —% >0, 7 = 1_Ty is the stretching transformation near y = 1 and g;(7),i = 1,2--- are

boundary layer functions (rapidly decay when y is away from y = 1). The corresponding boundary
conditions become

f0|y:1 = 17f0|y=71 =l—-ay= a, f(l)’yzfl = O, (428)
fizaly=1 = Gilr=0 = 0,i = 1,2,-- -, (4.29)
fi|y=*1 = vai/|y=*1 = Oa fi|y=1 +gi“r:0 = 07@' = 1,2, ey, (430)
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Substituting (4.26) and (4.27) into (3.1) and collecting the same power of € yield

60 : 62 — fof(/)/ = k‘o, (4.31)
et g 4+§1 =0, (4.32)
e fof! = 2£0f1 + [ f1 = alyfl —2£5) — M2 fi 4 £V — Ky, (4.33)
(4.34)

The above equations (4.31)-(4.33) subject to boundary conditions (4.28)-(4.30), respectively. It can be
easily obtained that the leading order solution is

Jo = acosh(by +b), (4.35)

where b = 1 cosh™' L and kg = —(ab)? = —2a*(cosh™' 1)2.
Applying the similar method in the mixed injection case and solving (4.32) and (4.33), one obtains

g1 = —absinh2b-e 7, (4.36)
M? —b? -2 b — M? + 2a + 2a2?
fiz)=—a+ &, (S(z) + —a) sinhz — - coshz — +oatsaz tanh z
b b 2b 2b
2 M?+2 2 —2(b* — M? + 4 ~ltanh z/2
- uz tanh? z — bat p = 2(b + da) tan” tanh 2/ (zsinh z — cosh 2),
2b 2b
(4.37)
where |
S(z) = . / —agsechg + ap?sechg tanh ¢ + (b2 — M? + 2a)psechp tanh? ¢ dep, (4.38)
0
and

M?2 —2a M?—b2— 20— 8bh«

=b(l —a— — - 2 32
p=b(1l—a—2a)—S(2b) 2 + 5% cosh 20 + acoth2b+ (M= — b* — 2a)
tanh 2b a M? — b — 4o
. tan tanh b(coth 2b — 2b). 4.
cosh 2b + 2 sinh b cosh 2b + b arctan tanh b(co ) (4.39)

Finally, an asymptotic solution of mixed suction for vo <v; <0 (ie. 0 <a <1)is

M2 b2 2 2 — M? 4 20 + 2022
f(y):coshz+e{—oz+%z—(S(z)+#)sinhz—2ﬂbcoshz—b j;ba—i— az
2 _ g2 _o(p2 _ A2 -1
tanh s — b ]\;[b +2aztanh2z— 2ba 4 —2(b le;i— 4or) tan tanhz/2(zsinhz
— cosh z) — absinh 2b- e 7} + O(€?), (4.40)

where 7 = 1_7?’ and z = by + b.
Remark: we remark that v; < vy < 0 (ie. a
solution, where b = %(cos™ 1 + 2n7) and ko = (ab)?

v

), a > 1, fo = acos(dy + d) is a leading order
a

1
1a*(cos™! L 4 2n7)2,

5. Asymptotic solution for the case of small Reynolds R and small expansion ratio «
case

For the small injection or suction and small expansion ratio case, it is reasonable to use the method
of regular perturbation expansions to construct the asymptotic solution. One, thus, may treat R as a
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perturbation parameter. The solution may be expanded as
f=fo+RA+Rfot---. (5.1)
Differentiating (2.11) with respect to y, one obtains
F7 alyf" 31" + RO = 1) = M =0 (52)

satisfying the boundary condition (2.12). Substituting (5.1) into (5.2) and equating the like powers of R
yield

00+ alyfy’ +3f5) — MPfg =0, (5.3)
1+ alyfl" +3f1) = M2 f{ + fg' fo = i fo = 0. (5.4)

The corresponding boundary conditions become

foly=1 =1, foly=1 =10, foly=—1 =1 — g, foly=—1=0, (5.5)
f1|y:1 = 07 fﬂy:l = 07 f1|y:—1 = 07 f{’y:_l =0.

We consider the case where « is also small and take it as the secondary perturbation parameter. Then,
fo and fi can be further expanded in the form

fo = foo + afo +O(a?),
fi = fio + afin +O(a?).

Substituting (5.7) into (5.3) and collecting like powers of « yield

) = M2 fiy =0, (5.9)
5 = M2 + it + 3560 = 0, (5.10)
with the boundary conditions
fooly=1 =1, fooly=1 =0, Jooly=—1 =1 — as, fooly=—1=0, (5.11)
fOl‘yzl = 07 fél’yzl = 07 f01|y:—1 = 07 f61|y:—1 = 0. (5.12)

Thus, the results are
ag(sinh My —yM coshM) 2 — a

= N
Joo o(sinh M — Meosh M) 2 (5:13)
for =D/(8M)[y*(M cosh M — sinh M) M sinh My — y((M cosh M — sinh M) cosh My
+ cosh M sinh M + M cosh2M — 2M) — (M cosh M + 2sinh M) M sinh My], (5.14)

where D = a(M cosh M — sinh M)~2.
Substituting (5.8) and (5.7) into (5.4) and equating equal powers of «, the leading order equation becomes

67 = M2fly+ fio foo — Foofhe =0 (5.15)
with the boundary condition
f10|y:1 =0, f{o|y=1 =0, f10|y:—1 =0, f{0|y=—1 =0. (5'16)
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The solution of fyg is

fio =Gy?[2aaM? sinh 2M sinh My(M cosh M — sinh M)] + M Gy[8(as — 2)(M cosh M — sinh M)?
-sinh My + 28ag cosh M (M cosh M — sinh M) cosh My + (14 sinh 2M cosh M — 2M
- cosh 3M — 26 M cosh M)] + 2G{4(as — 2) sinh® M[M cosh? M — cosh M (M cosh My
+ sinh M) + sinh M (cosh My + M sinh M)] — M?sinh 2M[(ca — 2)(2 cosh M cosh My
+ cosh 2M) — 3 (2 sinh M sinh My + 1) + 6] + 2M3 cosh? M[2(a — 2)(cosh M cosh My
— 1) — ag sinh M sinh My}, (5.17)

where G = a(64M sinh M)~(M cosh M — sinh M)~3. Finally, the solution becomes

f(y) =aa(sinh My — yM cosh M)/(2p) + (2 — a2)/2 + aca /(8Mp?)[y?p — sinh M) M sinh My
— y(pcosh My + cosh M sinh M + M cosh2M — 2M) — (M cosh M + 2sinh M) M
-sinh My] + Ra/(64p> M sinh M){y*[20s M? sinh 2M sinh Myp| + My([8(as — 2)p?
- sinh My + 28 cosh Mp cosh My + (14 sinh 2M cosh M — 2M cosh3M — 26 M
- cosh M)] 4 2{4(ap — 2) sinh? M[M cosh? M — cosh M (M cosh My + sinh M)
+ sinh M (cosh My + M sinh M)] — M? sinh 2M [(aa — 2)(2 cosh M cosh My
+ cosh 2M) — 3 (2 sinh M sinh My + 1) + 6] + 2M3 cosh? M[2(ap — 2)(cosh M
-cosh My — 1) — ap sinh M sinh My]}}, (5.18)

where p = M cosh M — sinh M.

6. Comparison of the asymptotic and numerical solutions

Table 6.1: Comparison of f”(—1) and f”(1) for large suction R

7D 70
M a9 @ R Asymptotic Numerical Asymptotic Numerical
results results results results
1.0 187 -1.5 -50 40.9395 40.8663 -47.4089 -47.4060
1.0 195 -2.0 -67 62.9581 62.9526 -66.3744 -66.3825
1.1 1.73 -3.0 -88 56.8609 56.8746 -78.2435 -78.2997
3.5 1.81 2.0 -90 62.9612 62.9067 -79.0131 -79.0398
6.5 1.50 3.5 -99 32.8125 32.9871 -71.6250 -71.9587
3.8 1.77 4.0 -110 70.1684 70.0583 -93.2607 -93.2641
2.5 1.60 -8.0 -135 69.7067 69.9336 -114.1870  -114.3161
6.0 1.50 3.0 -150 52.3125 52.3826 -110.2500  -110.4426
20.0 1.70 5.0 -150 83.6582 86.8943 122.8371 -125.1102
30.0 1.80 -7.0 -150 113.0850 119.4959 -140.6930  -145.8802
20.0 1.70 5.0 -175 98.5332 101.2919 -144.0871 -146.0277
30.0 1.80 -7.0 -175 131.0850 136.6659 -163.1930  -167.6935

Terrill[15] pointed out that the comparison of f”(1) was found to be the most effective way. Hence, in
this section we will make comparison of the asymptotic and numerical results of f”(—1) and f”(1) which
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are proportional to the skin-friction at the walls. The numerical solutions for (2.11) and (2.12) can be
readily obtained by a matlab boundary value problem solver bvp4c.

For the large suction case, it can be seen from Table 6.1, the analytical results agree well with the
numerical results for arbitrary constants as and a for M?/R ~ O(e). Nevertheless, it is clear from the
last four lines of the Table 6.1 that asymptotic results deteriorate when M? becomes of the same order
as that of the suction Reynolds number. Hence, we need to use the asymptotic solution for the case of
M?/R ~ O(1). We find that the large magnetic field has noticeable effect on the solution, because the
parameter 1 has went into the terms of O(¢)?. As shown in Table 6.2, when using the solution (3.40), the
accuracy is largely improved compared with Table 6.1 for large M.

Table 6.2: Comparison of f”(—1) and f”(1) for large suction R and M

7D 70
M a o R Asymptotic Numerical Asymptotic Numerical
results results results results
20 1.7 5 -150 86.8963 86.8943 -125.1038  -125.1102
20 1.7 b5 -175 101.3087 101.2919 -146.0300  -146.0277
30 1.8 -7 -150 119.835 119.4959 -146.0925 -145.8802
30 1.8 -7 -175 136.8707 136.6659 -167.8211 -167.6935
20 1.7 5 -213 123.4236 123.3904 -177.9834  -177.9750
30 1.8 -7 -213 188.9365 188.8691 -208.9649 -208.9114

For the mixed cases, as shown in Table 6.3 and Table 6.4, the asymptotic solutions realize a good
agreement with the numerical solutions. Meanwhile, tabulated values indicate that the skin-friction is
increasing with the increasing R.

Table 6.3: Comparison of f”(—1) and f”(1) for mixed injection

1) 70

M o « R Asymptotic Numerical Asymptotic Numerical
results results results results
2 02 -3 50 7.66931 7.8352 -0.1244 -0.1256
2 02 -3 170 10.7495 10.9157 -0.1184 -0.119
2 02 -3 90 13.8335 14.0000 -0.1151 -0.1155
2 02 -3 110 16.9193 17.0860 -0.1129 -0.1132
2 02 -3 130 20.0060 20.1729 -0.1115 -0.1117
2 02 -3 150 23.0933 23.2603 -0.1104 -0.1106
3 01 2 50 4.3808 4.2281 -0.0541 -0.0541
3 01 2 70 6.1493 5.9912 -0.0531 -0.0531
3 01 2 90 7.9181 7.7570 -0.0526 -0.0526
3 01 2 110 9.6872 9.5242 -0.0523 -0.0523
3 0.1 2 130 11.4564 11.2920 -0.0521 -0.052
3 01 2 150 13.2256 13.0602 -0.0519 -0.0519

At this juncture, it is useful to note that if there is no magnetic field (i.e.M = 0) and the physic model
is symmetric (i.e.cx = 2 ), the solution of small R and small « can be reduced to the solution given by
Majdalani and Zhou[9]. Furthermore, it is clear from Table.6.5 that the asymptotic results have a good
match to the numerical results and the accuracy is increasing with the decreasing of R and a.
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Table 6.4: Comparison of f”(—1) and f”(1) for mixed suction
7D Q)
M as a R Asymptotic Numerical Asymptotic Numerical
results results results results
1 006 -3.7 -15 0.0485 0.0527 -0.9107 -0.9342
2 0.06 -3.7 -15 0.0527 0.0583 -0.9194 -0.9018
1 013 1.2 -19 0.0599 0.0606 -2.4275 -2.5332
2 013 1.2 -28 0.0662 0.0665 -3.6532 -3.6001
2 024 28 -39 0.1056 0.1065 -9.6410 -9.5938
2 020 -1.5 -50 0.0949 0.0955 -8.7021 -8.5348
1 036 0.8 -55 0.1632 0.1634 -21.1974 -21.3687
2 054 17 -67 0.2255 0.2259 -41.4631 -41.1129
2 0.08 -2.1 -75 0.0439 0.0440 -6.0502 -5.9984
1 049 09 -89 0.2095 0.2097 -49.0864 -49.3811
Table 6.5: Comparisons of f”(—1) and f(1) for small R and small «
f"(=1) f'()
M Q@ R Asymptotic Numerical Asymptotic Numerical
results results results results
3 19 0.01 0.01 4.2349 4.2349 -4.2342 -4.2342
3 1.8 0.02 0.03 4.0035 4.0035 -3.9996 -3.9996
5 1.5 0.04 0.06 4.6636 4.6636 -4.6495 -4.6497
7 13 010 0.09 5.2665 5.2667 -5.2426 -5.2430
9 1.0 015 0.19 5.0262 5.0263 -4.9727 -4.9735
12 0.8 022 0.28 5.2042 5.2043 -5.1309 -5.1319
15 0.6 -0.35 -0.30 4.8575 4.8576 -4.9250 -4.9260
20 04 -0.40 0.29 4.2726 4.2730 -4.2238 -4.2238
13 0.3 050 -0.38 2.0482 2.0490 -2.1007 -2.1007
8 0.1 -0.30 0.40 0.4765 0.4768 -0.4548 -0.4548
8§ 0.1 050 0.60 0.4580 0.4581 -0.4255 -0.4254
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7. Conclusion

In this paper, we construct the similarity solutions of asymmetric channel flow with porous retractable
walls and a transverse magnetic field. First, one asymptotic solution with the linear leading order is
obtained for the large suction case, and it is found that the skin-friction near the walls increases with the
increasing magnetic field intensity. Secondly, we obtain asymptotic solutions for the flow in a channel that
one wall is with injection and the other is with suction. All above asymptotic solutions are constructed
for the most difficult large Reynolds number cases. Finally, when the wall contraction or expansion is
weak and the injection or suction is small, one asymptotic solution is obtained by the two-parameter
perturbation method. All asymptotic solutions are verified by numerical solutions obtained by a Matlab
boundary value problem solver bvp4c.
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