167 research outputs found
Sex in basic research – Concepts in the cardiovascular field
Women and men, female and male animals and cells are biologically different, and acknowledgement of
this fact is critical to advancing medicine. However, incorporating concepts of sex-specific
analysis in basic research is largely neglected, introducing bias into translational findings, clinical concepts and drug
development.Research funding agencies recently approached these issues but implementation of policy
changes in the scientific community is still limited probably due to deficits in concepts, knowledge and proper methodology. This expert review is based on the EUGenMed project (www.eugenmed.eu) developing a roadmap for implementing sex and gender in biomedical and health research. For sake of clarity and conciseness, examples are mainly taken from the cardiovascular field that may serve as a paradigm for others, since a significant amount of knowledge how sex and estrogen determine the manifestation of many
cardiovascular diseases (CVD) has been accumulated. As main concepts for implementation of sex in
basic research, the study of primary cell and animals of both sexes, the study of the influence of genetic
versus hormonal factors and the analysis of sex chromosomes and sex specific statistics in genome wide
association studies (GWAS) are discussed. The review also discusses methodological issues, and analyses
strength, weaknesses, opportunities and threats in implementing sex-sensitive aspects into basic
research
Application of magnifying narrow-band imaging endoscopy for diagnosis of early gastric cancer and precancerous lesion
<p>Abstract</p> <p>Background</p> <p>Gastric carcinoma is the second commonest cause of cancer deaths worldwide. Early detection and diagnosis of gastric cancer in the stomach is important for improving the prognosis of gastric cancer. This retrospective study was designed to investigate the value of magnifying narrow-band imaging (NBI) in the diagnosis of precancerous lesions and early gastric cancer.</p> <p>Methods</p> <p>This study included 122 patients who were diagnosed with early gastric cancer or precancerous gastric lesions by endoscopy. The patients underwent an examination with conventional endoscopy, magnifying NBI, and magnifying chromoendoscopy. Images resolution was evaluated, and the morphology, pit patterns and blood capillary forms of lesions were analyzed. The presence of gastric carcinoma and high grade intraepithelial neoplasia in the biopsy samples was considered as a positive pathological result, which is used to assess accuracy of endoscopic diagnosis.</p> <p>Results</p> <p>For image resolution, magnifying NBI and magnifying chromoendoscopy were significantly superior to magnifying conventional endoscopy in morphology, pit pattern and blood capillary form (P < 0.01), and magnifying NBI was significantly superior to magnifying chromoendoscopy in blood capillary form (P < 0.01). IV, V<sub>1</sub>, and VI type of gastric pit pattern were detected in 14 cases, 43 cases, and 17 cases in patients with high grade intraepithelial neoplasia, respectively. V<sub>1 </sub>and VI type of gastric pit pattern were detected in 9 cases and 39 cases in patients with early gastric cancer, respectively. The presence of irregular minute vessels and variation in the caliber of vessels was found in 109 cases. The accuracy, sensitivity, specificity, false positive rate and false negative rate for diagnosis of early gastric cancer and precancerous gastric lesions were 68.9%, 95.1%, 63.1%, 24.5%, and 32.4% for conventional endoscopy, 93.6%, 92.7%, 94.5%, 5.7%, and 6.9% for magnifying NBI, and 91.3%, 88.6%, 93.2%, 13.2%, and 21.48% for magnifying chromoendoscopy, respectively.</p> <p>Conclusions</p> <p>This study demonstrates that magnifying NBI is superior to conventional endoscopy in the diagnosis of early gastric cancer and precancerous gastric lesions, and can be used for screening early malignancies of the stomach.</p
Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury
Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies
Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains
BackgroundShortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet.ResultsChronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis.Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5 inverted question mark9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD.ConclusionIn conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence of the sub-chronic stress caused by the flower pot method. These data might support the antidepressant activity of SSRIs, and may allude that investigating the rebound period following the flower pot protocol could be useful to detect antidepressant drug response. Markov analysis is a suitable method to study the sleep pattern
The assessment and rehabilitation of prospective memory problems in people with neurological disorders: A review
People with neurological disorders often report difficulty with prospective memory (PM), that is, remembering to do things they had intended to do. This paper briefly reviews the literature regarding the neuropsychology of PM function, concluding that from the clinical perspective, PM is best considered in terms of its separable but interacting mnemonic and executive components. Next, the strengths and limitations in the current clinical assessment of PM, including the assessment of component processes, desktop analogues of PM tasks, and naturalistic PM tasks, are outlined. The evidence base for the rehabilitation of PM is then considered, focusing on retraining PM, using retrospective memory strategies, problem-solving training, and finally, electronic memory aids. It is proposed that further research should focus on establishing the predictive validity of PM assessment, and refining promising rehabilitation techniques
XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa
BACKGROUND: Retinitis pigmentosa (RP) is a blinding genetic disorder that is caused by the death of photoreceptors in the outer nuclear layer of the retina. To date, 39 different genetic loci have been associated with the disease, and 28 mutated genes have been identified. Despite the complexity of the underlying genetic basis for RP, the final common pathway is photoreceptor cell death via apoptosis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, P23H and S334ter rhodopsin transgenic rat models of RP were used to test the neuroprotective effects of anti-apoptotic gene therapy. Adeno-associated viruses (AAV) carrying the X-linked inhibitor of apoptosis (XIAP) or green fluorescent protein (GFP) were delivered subretinally into the eye of transgenic rat pups. Histological and functional measures were used to assess neuroprotection. XIAP is known to block apoptosis by inhibiting the action of caspases-3, -7 and -9. The results show that XIAP gene therapy provides long-term neuroprotection of photoreceptors at both structural and functional levels. CONCLUSIONS/SIGNIFICANCE: Our gene therapy strategy targets the apoptotic cascade, which is the final common pathway in all forms of retinitis pigmentosa. This strategy holds great promise for the treatment of RP, as it allows for the broad protection of photoreceptors, regardless of the initial disease causing mutation
- …