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Abstract 52 
Women and men, female and male animals and cells are biologically different, and acknowledgement of 53 
this fact is critical to advancing medicine. However, incorporating concepts of sex-specific analysis in 54 
basic research is largely neglected, introducing bias into translational findings, clinical concepts and drug 55 
development. Research funding agencies recently approached these issues but implementation of policy 56 
changes in the scientific community is still limited, probably due to deficits in concepts, knowledge and 57 
proper methodology.  58 
This expert review is based on the EUGenMed project (www.eugenmed.eu) developing a roadmap for 59 
implementing sex and gender in biomedical and health research. For sake of clarity and conciseness, 60 
examples are mainly taken from the cardiovascular field that may serve as a paradigm for others, since a 61 
significant amount of knowledge how sex and estrogen determine the manifestation of many 62 
cardiovascular diseases (CVD) has been accumulated. As main concepts for implementation of sex in 63 
basic research, the study of primary cell and animals of both sexes, the study of the influence of genetic 64 
versus hormonal factors and the analysis of sex chromosomes and sex specific statistics in genome wide 65 
association studies (GWAS) are discussed. The review also discusses methodological issues, and analyses 66 
strength, weaknesses, opportunities and threats in implementing sex-sensitive aspects into basic 67 
research.   68 
 69 
Key words: sex, basic research, chromosomes, hormones, animal models, cardiac cell models 70 

Introduction 71 
Women and men are biologically different at the level of the cells, the organs and the organism. While 72 
sex refers to biological differences between males and females, in terms of genetics, epigenetics and 73 
endocrinology, gender refers to sociocultural status. Gender aspects are specific to humans, while sex 74 
differences can be studied in animal models and isolated cells. Knowledge on sex specificity in animal 75 
models, on different metabolic pathways and physiology is needed for interpretation of human 76 
diseases. Yet, in many research fields the proportion of studies utilizing male and female animals favors 77 
males.1 This bias occurs even in the majority of transgenic mouse strains with cardiovascular or 78 
immunological phenotypes where significant sex differences are obvious. Furthermore, there is ongoing 79 
scientific debate about the benefits of preclinical studies of sex differences, when balanced against the 80 
potential harm of introducing conceptual and empirical errors into research.2 81 
 82 
Drug development is getting more and more difficult and costly, and new approaches are needed. The 83 
philosophy of precision medicine asks us to replace the “one size fits all” paradigm by more targeted 84 
approaches. Understanding sex specific mechanisms and deciphering why preferentially one sex or age 85 
group is protected or affected shall lead to opportunities of developing better therapies for all. All the 86 
sex specific differences impact understanding of physiology, pathophysiology and response to therapy. 87 
 88 
The impact of sex and gender is particularly well studied in the field of CVD (Fig 1). Sex and gender 89 
influence CVD by their effects on heart, brain, heart /brain interaction, their effects on the vasculature 90 
and the peripheral muscle, liver and kidney, drug metabolism and excretion. This has recently been 91 
reviewed elsewhere by our Eugenmed group.3 Therefore, we also chose CV research as a main area for 92 
the present review and analyze how introducing sex specific aspects in basic research will open new 93 
paradigms in understanding human disease. 94 
 95 
The aim of this review is not to cover in a comprehensive manner all approaches to analyze sex in basic 96 
CV research and we refer to previous work for this purpose.4, 5 In contrast, we aim at presenting 97 
concepts, mechanisms and best practice examples mainly from Europe but including also leading 98 
scientists from other areas of the world, as they were identified in the FP 7 funded project EUGenMed 99 
(www.eugenmed.eu). Not only research findings are discussed but also resources (Table 1)6 and 100 
principles for basic research on sex differences with their strength, weaknesses, opportunities and 101 
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threats. 102 

Methods 103 
The present materials have been gathered within the interdisciplinary EU funded project EUGenMed (FP 104 
7, www.eugenmed.eu/). EUGenMed aimed at building a roadmap for implementation of sex and gender 105 
in European biomedical and health research. This expert review is part of this road map.3 It is built on a 106 
systematic collection of the literature in our database “gendermeddb” that contains more than 13,000 107 
references on sex and gender in medicine and basic research, including major reviews on research 108 
strategies and educational resources (Table 1) and the analysis of this database in the EUGenMed 109 
project. We also screened PubMed with the same search terms for most recent publications that were 110 
not yet included in the database.7 111 
 112 
The selection of the main focus, cardiovascular research, is based on the result of the EUGenMed 113 
process (www.eugenmed.eu). Legitimation of the writing group has been achieved by selecting this 114 
group of experts from a large set of European stakeholders in gender medicine. This was done at the 115 
EUGenMed kick-off conference in an open, transparent process. Experts were invited to 4 conferences 116 
and a workshop held in Berlin and developed together the present paper. 117 
 118 
Table 1:  119 

Resources on sex in basic research 120 
http://www.eugenmed.eu/ 121 
http://gendermeddb.charite.de/ 122 
http://sgbmeducationsummit.com/ 123 
https://genderedinnovations.stanford.edu/ 124 
http://sgwhc.org/#sthash.T25i3nzd.dpbs 125 
http://www.cihr-irsc-igh-isfh.ca/ 126 
https://www.sexandgendercourse.org/ 127 
https://gender.charite.de/en/education/elective_courses/ 128 
http://www.isogem.com/ 129 

Mechanisms for sex differences: Sex chromosomes, sex hormones 130 
Primary factors causing sex differences are sex chromosomes, which are present in every cell type and 131 
differ between males and females, followed by maternal and paternal imprinting, by incomplete X-132 
inactivation and epigenetic modification (Fig. 2).8 They induce early in embryogenesis gonad 133 
development and the synthesis of sex hormones.  134 
Sex hormones, synthesized in the gonads or extragonadal tissues, interfere with the effects of sex 135 
chromosomes. Notably, testosterone is converted to estradiol by aromatase in many organs. 136 
Activational effects of sex hormones, that requires presence of the hormone and organizational 137 
(delayed) effects that result frequently from epigenetic modifications and persist in absence of 138 
hormones must be separated. Sex differences in transcriptomic regulation may arise from purely genetic 139 
differences XX vs XY, from maternal or paternal imprinting, but also from secondary epigenetic 140 
modifications and effects of hormones. The brain plays a major role as it controls hormone production 141 
via the Hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal axes, the growth 142 
hormone system, and finally behavior. 143 

Developmental origin of disease  144 
In line with the new paradigm of the Developmental Origins of Health and Disease (DOHaD), and 145 
throughout the life cycle of ancestors, parents and offspring, the environmental factors to which an 146 
individual is exposed throughout life can leave an epigenetic footprint on the genome that dictate the 147 
coordinate expression of genes.9 Non-genetic and non-cultural heritability of susceptibility/resilience to 148 
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common chronic diseases often show sex-specific differences. This is due not only to the chromosomal 149 
sex (XX or XY) before gonad differentiation, but later on, to a complex intermingling of both hormones 150 
and X/Y genes regulating autosomal genes through epigenetic processes. Crucial periods are 151 
gametogenesis and the early development, where the individual’s epigenome is particularly sensitive to 152 
the effects of the environment, building up the individual’s health capital to respond more or less well to 153 
the vagaries of life and most often in a sex-specific manner.10 Changes in sex differences for epigenetic 154 
marks and modifiers also revealed the existence of different adaptation mechanisms in males and 155 
females.  156 

Hypothalamic-pituitary-adrenal axis  157 
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with increased risk of 158 
depression, the metabolic syndrome and accelerated cognitive decline as a person ages. Activity of the 159 
HPA axis is ‘programmed’ in utero: overexposure of the developing fetus to excess glucocorticoids is 160 
associated with low birth weight and increased reactivity of the HPA axis with associated adverse health 161 
including cardiovascular risk factors, cardiovascular diseases (CVD), asthma and poorer cognitive 162 
function.11 Sex-specific differences in early life programming of the HPA axis in humans may underpin 163 
the observed sex differences in these diseases. Psychosocial stress and glucocorticoid medications affect 164 
placental glucocorticoid biology and HPA axis function in early- and later-life. Female offspring have 165 
increased diurnal cortisol secretion and HPA axis reactivity, compared to males.12 Further, permeability 166 
of the female placenta to maternal glucocorticoids increases following maternal stress. Changes in 167 
placental permeability are associated with changes in the expression of 11β-hydroxysteroid 168 
dehydrogenase enzymes in the newborn. Thus, sex differences in the effects of maternal stress and in 169 
the placental handling of glucocorticoid hormones may be a mechanism underlying sex differences in 170 
diseases later in life including depression and cardiometabolic disease.  171 

Sex hormones and the brain  172 
Sex differences in brain morphology have been described in both rodents and humans in many different 173 
areas such as hypothalamus, amygdala, hippocampus, cortex and others. Differences are present in the 174 
volumes of brain nuclei, cell numbers, synapse number, and expression of genes/proteins.13 However, 175 
for the majority of these sex differences it is still not clear how they exactly develop, and what is the 176 
connection between particular sexually dimorphic brain structure and behavior, diseases of peripheral 177 
organs or psychiatric illnesses. Although majority of sex differences in the past have been attributed to 178 
the action of sex steroid hormones, recent studies suggest that brain sexual differentiation is not simply 179 
a consequence of masculinization of male fetal brain by testosterone.13 Prepubertal exposure to 180 
estrogens might be responsible for active feminization of mouse female brain, and several studies in 181 
rodent models have shown contribution of sex chromosomes to the sexual differentiation of certain 182 
behaviors such as aggressive and parental behavior, social interaction, and others. Epigenetic regulation 183 
also contributes to the sexual differentiation of the brain.14, 15 The effect of these differences affects 184 
disease related behavior and thereby outcome of diseases in the human.  185 

The X chromosome and Genome wide association studies  186 
Genome wide association studies (GWAS) have advanced our understanding of the genetics of complex 187 
diseases. However, most of the GWAS analyzed the 22 autosomal chromosomes only so that, although 188 
the X chromosome constitutes 5% of the genome and underlies almost 10% of Mendelian disorders, it 189 
harbors only 15 of the 2,800 associations reported by GWAS of nearly 300 traits.16 There are various 190 
reasons for not including the X chromosome in GWAS: i) poor coverage, ii) increased workload owing to 191 
sex-specific quality control, iii) power issues owing to a smaller sample size, and iv) the requirement for 192 
specific tools. 193 
Such specific tools are needed because males and females have unequal numbers of X chromosomal 194 
loci. This needs to be addressed in the genotype-calling step and has consequences for genotype 195 
imputation and association analyses.17 Additionally, in the process of X-inactivation, large parts of one of 196 
the female X chromosomes are silenced, so that one copy in males and two copies in females have equal 197 
effects.8 X-inactivation is incomplete, and it is estimated that about three-quarters of X chromosomal 198 
genes are silenced in one female X chromosome in some individuals. This is important when deciding 199 



CVR-2016-848R2 

 

5 

how to test for associations with X chromosomal variants as described recently.17 200 
In future GWAS, the inclusion of X chromosomal data might partly explain the missing heritability of 201 
complex diseases, especially those with sex-specific features. 202 

Epigenetic control of gene regulation  203 
Sexual dimorphisms arise due to a combination of genetic determinants and environmental cues which 204 
are frequently transmitted by epigenetic regulation. Including DNA methylation, non-coding RNAs and 205 
histone modifications, epigenetic regulation is essentially involved in S&G-specific gene regulation.18, 19 206 
Imprinting is a well-known epigenetic process of allele-specific gene regulation dependent on the parent 207 
of origin. Whether the maternal or paternal alleles of imprinted gene clusters are expressed is 208 
independent of the underlying sequence, but mainly determined by DNA-methylation and certain 209 
histone modifications. Another epigenetic control of gene expression is the X-chromosome inactivation 210 
that is specific to females and describes the random inactivation of one X-chromosome by an lncRNA.20  211 
More recently, studies have been addressing the question of whether there are sex-specific epigenetic 212 
modifications of both alleles. Indeed, several autosomal sex-dimorphic DNA methylation sites as well as 213 
histone modifications have been identified in different mouse organs and were often linked to sexually 214 
dimorphic expression patterns.21 Since most studies so far are limited on single epigenetic marks in one 215 
tissue and mouse strain, it would be advantageous in the future to integrate data from studies of 216 
epigenetics, gene expression and protein abundance.  217 

Sex differences in transcriptomic regulation  218 
The limited approaches for genome-wide expression profiling of the heart under physiological 219 
conditions indicate that there are relatively few genes with a sexually dimorphic expression, which 220 
actually seem to be sex chromosome-linked.22 The situation changes dramatically under pathological 221 
conditions. In pressure overload-induced hypertrophy, the response of the cardiac transcriptome 222 
significantly differs between men and women.23 In response to pressure overload, fibrosis and 223 
inflammatory pathways are increased, while those associated with energy-producing processes are 224 
decreased in hearts from males. In contrast, in heart from females, pathways associated with energy 225 
production are increased and those associated with fibrosis-related and inflammatory processes are 226 
decreased. Other whole-genome profiling studies reported sex-specific transcriptomic differences in 227 
end-stage heart failure and in new-onset heart failure.24 Sex and age interact on cardiac protein 228 
expression, with an upregulation of pro-inflammatory and pro-apoptotic proteins in males and 229 
angiogenetic and cytoskeletal proteins in females and a downregulation of cytoskeletal proteins in 230 
males and of integrin signaling in females (Fig 3).25-27 Moreover, there is good evidence that estrogen 231 
affects gene expression in the heart in a sex-specific manner, as discussed below for collagen 232 
synthesis.28-30 233 

Sex hormone receptors 234 
Key component in expression of sex differences are the signaling pathways activated by the estrogen 235 
and androgen receptors (ERs, AR). ER and AR belong to the family of nuclear receptors and are 236 
important regulators of a plethora of cellular events and strong epigenetic modulators. Two ERs, ERα 237 
and ERβ, bind to the DNA and function as ligand-induced transcription factors thereby regulating gene 238 
expression and cell function.31 In addition, activation of ER that are localized to the plasma membrane 239 
results in signaling cascade activation, such as ERK/MAPK and PI3K.32 ERα and ERβ can regulate gene 240 
expression differentially within the same tissue or cell33 and they can exert different effects in females 241 
and males.28 These differences may be attributed to either sex differences in DNA and histone 242 
modifications, in co-factor expression or different levels of ERα relative to ERβ. Therefore, the 243 
preponderance of one of these ER over the other, and their expression at the cell surface (mER) and 244 
access to nuclear DNA might change the impact of estrogen activity, as discussed below in more detail. 245 
Estrogen can also bind to a newly described orphan G-protein coupled receptor (GPR30), which is 246 
located at the cell membrane and can acutely activate signaling kinases.34  247 
 248 
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Sex differences in major cellular functions  249 
Sex and estrogen exert a plethora of effects in all CV cells and on almost all cellular functions. As these 250 
have been reviewed in detail recently4, 5 (Fig 3) we focus in this review on 3 best practice examples for 251 
mechanisms that affect almost all CV cells, cardiomyocytes, fibroblasts, endothelial and smooth muscle 252 
cells. 253 

Sex differences in cell death and survival  254 
XX and XY cells have different susceptibility to undergo apoptosis, anoikis, autophagy or senescence. 255 
The response of cells from males and females to the same stress, e.g. oxidative, leads to a different fate, 256 
i.e. XX cells are more resistant to microenvironmental injury and to death insults than cells from males, 257 
and survive better, e.g. undergoing autophagic cytoprotection.35 Estrogen, through nuclear and surface 258 
estrogen receptors, modulates cell survival and death signaling pathways.36 (Fig 4) In particular, the 259 
activation of the extracellular signal–regulated kinase (ERK) pathway, i.e. ERK phosphorylation, after non 260 
-nuclear ERα ligation, appears capable of activating an autophagic cytoprotection cascade. Furthermore, 261 
some pumps at the cell surface, able to maintain intracellular milieu, are as well up-regulated by 262 
estrogen signaling pathways.37 It can be hypothesized that these two mechanisms can partially explain 263 
the higher propensity of cells from females, in which the estrogens-ER binding predominantly occurs, to 264 
counteract exogenous stress activating an autophagic cytoprotection response.38 265 
 266 

Mitochondrial function  267 
Mitochondria exhibit a strong gender-specific behavior as they are exclusively maternally inherited and 268 
exert differential effects in males and females. Because of this exclusive maternal transmission, the 269 
interest in the role of mitochondria and sex determination is growing. Most of the mitochondrial 270 
proteins are encoded by the nucleus; therefore, mitochondrial structure and function are tissue-specific 271 
and subjected to sex-specific influences. In addition, ERs are also present in mitochondria, promoting 272 
mitochondrial biogenesis, respiratory activity and signaling pathways for protection against oxidative 273 
stress which is related to a number of CV pathologies.39  274 
Sex differences in mitochondria potentially include energy production, defenses against oxidative stress, 275 
substrate utilization, calcium regulation, mitochondrial biogenesis and mitophagy and mechanisms of 276 
apoptosis (Fig 4)(for review4, 5). For example, mitochondria from females have higher resistance to 277 
ischemia/reperfusion injury because they produce less reactive oxygen species (ROS) and have higher 278 
antioxidant capacity. Female rodents have altered posttranslational modification of several 279 
mitochondrial proteins, including ALDH2, a protein that is involved in cardioprotection, suggesting that 280 
altered phosphorylation of mitochondrial proteins alters ROS handling in female mitochondria.40 Genes 281 
involved in metabolism and mitochondrial biogenesis show different patterns of regulation in female 282 
compared to male mouse hearts that might contribute to the lower severity of heart failure in females.28 283 
Female rats are much less sensitive to the cardiotoxic effects of anthracyclines by mechanisms involving 284 
mitochondria.41 Whether a similar difference is present in human heart remains to be explored. 285 

Fibrous tissue synthesis  286 
Cardiac fibrosis leads to global heart dysfunction and is a major predictor of heart failure. In humans, sex 287 
differences in cardiac fibrosis exist under specific pathological conditions. For example, in aortic 288 
stenosis, men show higher collagen deposition associated with higher activation of pro-fibrotic markers 289 
compared with women.42, 43  290 
Similar to the human condition, hearts from male mouse show more cardiac fibrosis under pressure 291 
overload, correlated with higher activation of pro-fibrotic genes, compared to hearts from females.44 292 
17β-Estradiol, through activation of ERα and ERβ, decreases the development of fibrosis in hearts of 293 
female mice. Only few studies compared ER signaling on cardiac fibrosis in both sexes. In a mouse model 294 
with pressure overload induced myocardial hypertrophy (MH), ERβ limited fibrosis in hearts from 295 
females, but promoted it in males.28 Possible mechanisms include activation of ERK signaling and control 296 
of collagen synthesis via ERα or sex specific phosphorylation of ERα and ERβ (Fig. 5). Hearts of female 297 
mice show significantly less ERβ-modulated miRNA induction compared with those from males.29 In-298 
vitro studies, using rat cardiac fibroblasts from both sexes, delineate the sex-dimorphic regulatory role 299 
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of E2/ER on pro-fibrotic gene expression.30  300 

Translational approaches  301 
Translational approaches, i.e. studies spanning the bridge from experimental model systems to the 302 
human, or vice versa, often do not consider sex or sex differences. There are a few exceptions: first, sex 303 
differences in DNA methylation predict sex differences in CV phenotypes in animal and cell systems and 304 
in the human. Second, sex differences in cardiac metabolism and related phenotypes may be translated 305 
from mice to men. Third, studying the interaction between pregnancy and CVD in experimental systems 306 
and in the human may be considered a translational approach.  307 

Sex differences in epigenetics  308 
Epigenetic modifications represent the mechanism by which the environment influences the genome 309 
and gene expression. Intrauterine undernutrition leads to sex specific promoter methylations in 310 
metabolic and cardiovascular genes.45 In an experimental study, intrauterine hypoxia led to greater 311 
PKCepsilon depression in male than in female hearts of fetuses and adult offspring. Hypoxia-induced 312 
methylation of SP1 sites in the PKCepsilon promoter was significantly greater in males than in females, 313 
and this was associated with greater depression of PKCepsilon and sensitivity to ischemic injury in the 314 
males.46 Patients with heart failure present an altered promoter methylation in genes involved in 315 
contractility, fibrosis and apoptosis;47 however it remains to be established whether DNA methylation 316 
state participate in the gender-specificity of these genes.22, 23 Lower global leukocyte DNA methylation 317 
was associated with higher cardiovascular risk in postmenopausal women.48 Sex specificity in DNA 318 
methylation may be mediated by the fact that DNA modifying enzymes, i.e. histone acetyl transferases 319 
CBP and p300 are recruited to the DNA by estrogen and androgen receptors and that DNA 320 
de/methylases are expressed in a sex-specific manner.8 321 

Lipid and glucose metabolism in the myocardium  322 
In a number of models, based on studies in mainly male rodents, HF shifts myocardial metabolism away 323 
from fatty acid and towards glucose metabolism. Since glucose is a more oxygen-efficient fuel than fatty 324 
acids, this was first considered to be beneficial, in particular in ischemic conditions. However, it now 325 
becomes apparent that this shift leads to insulin resistance and earlier functional deterioration. Female 326 
animals did better in non-ischemic HF models than males and this was associated with better preser-327 
vation of mitochondrial metabolism and fatty acid utilization.28, 49 Translation of this sex difference to 328 
humans has recently been accomplished. In human left ventricular remodelling under pressure 329 
overload, sex-dependent regulation of metabolic pathways occured with a less severe decrease in 330 
mitochondrial gene expression in the female than in the male heart.23 Moreover, healthy women have a 331 
greater capacity for myocardial fatty acid oxidation than men a characteristic that is preserved in HF.50  332 

Pregnancy complications and later CVD: focus on vascular function  333 
A woman’s reproductive history serves as a predictor for later risk of CVD. Preeclampsia (PE), a disorder 334 
peculiar to human pregnancy, is characterized by concomitant occurrence of hypertension and 335 
proteinuria.51, 52 Women with a history of PE have higher CVD risk if compared to women with normal 336 
pregnancy. PE women delivering preterm and mothers with recurrent PE carry even greater risks for 337 
later CVD and kidney failure. Being the mother of growth restricted baby or a preterm infant also 338 
increase the risk of CVD later in life. PE and CVD share risk factors such as diabetes, obesity or 339 
hypertension, and pathogenetic mechanisms such as oxidative stress, endothelial dysfunction and 340 
insulin resistance. In women who develop PE, the threshold for clinical CVD is breached during 341 
pregnancy and subsequently again later in life, as increasing age is added to the already present and/or 342 
newly acquired CVD risk factors. In this way, adverse pregnancy outcomes may reveal women at 343 
increased risk of CVD in later life.3   344 

Drug development 345 
More and severe adverse effects of drugs in women than men led to drugs withdrawn from the US 346 
market between 1997 and 2000 (US general accounting office 2011 Drug Safety). Indeed, new drugs 347 
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often fail in the phase 3 studies. Deficits in correspondence of animal models to the human study 348 
settings, i.e. participant selection, may play a role. The new technical possibilities to study the “omics” 349 
help to select sex-specific targets. Recently, sex differences in omics have been evidenced also in adult 350 
and neonates of humans.53 However, sex differences appear to be organ- and stimulus specific, and 351 
these variables have to be considered in the experimental approaches.54 352 
Different life phases of women and men are not sufficiently considered in drug development. The 353 
decline of the endogenous production of hormones, in particular, estrogen at menopause, often leads 354 
to functional disorders. In a more general manner, it will be mandatory to study the interaction of sex 355 
with age in women and men. Finally, it is relevant to recall that the pharmacodynamic aspects should be 356 
considered more intensely in sex-specific drug design.55  357 

Sex differences in preclinical research 358 
Most preclinical research in drug development is done using male animals and cells with unidentified 359 
sex.56, 57 However, significant differences exist in the outcomes of male and female mice in models of 360 
myocardial infarction, pressure overload and genetic CVDs, diabetes mellitus, multiple sclerosis or other 361 
diseases that are often not considered by the researchers.54 As extreme consequences, a drug or gene 362 
modification may be effective in a male animal model and completely ineffective in females on some 363 
outcome parameters, or vice versa.58 For example, transgene overexpression of melusin, a muscle-364 
specific chaperone protein capable of ERK1/2 signaling activation in the heart, reduced early mortality 365 
after myocardial infarction in male mice but failed to do so in female animals.58, 59 (Fig. 6) 366 

Structure-function of estrogen receptor in vivo: optimization of its modulation in medicine  367 
Estrogens display protective effects on the development of atherosclerosis and type 2 diabetes in animal 368 
models.60, 61 ERα, but not ERβ, is necessary for most of the arterial and metabolic actions of E2. 369 
Estrogens also elicit deleterious effects on the uterus and breast as well as increase risk of venous 370 
thromboembolism. These two deleterious actions represent the main limitation and Achille’s heel of 371 
classic estrogen therapies and may have contributed to the negative results of the Women Health 372 
Initiative.  373 
The full length ERα is composed of 6 domains containing the 2 independent activation functions AF-1 374 
and AF-2. Owing to specific transgenic mouse models, the respective roles of AF-1 and of AF-2 activation 375 
functions, and the «membrane initiated steroid signalling» (MISS) could be elucidated as well as their 376 
physiological roles in the proliferative effects of E2 on sex target, arteries and metabolism.62, 63 377 
Selective estrogen receptor modulators (SERMs) have a highly tissue-specific action. Indeed, SERMs are 378 
molecules that retain some desired/beneficial actions of estrogens (on bone for instance) and oppose 379 
some deleterious effects particularly on breast (ER positive breast cancer proliferation and recurrence). 380 
A challenge is thus to develop new SERMs based on the uncoupling between the beneficial effects of E2 381 
and its proliferative effects on reproductive targets and/or its venous pro-thrombo-embolic effects. For 382 
this purpose new SERMs or combination of estrogens with a SERM with potentially greatly improved 383 
safety profile have been developed.64 384 

Cardiac function, testosterone and PDE5-inhibitors  385 
Sex-specific clinical characteristics have been discussed related to estrogen levels. However, several 386 
studies have also found relationships with varying levels of testosterone. For example, lower 387 
testosterone and higher E2 levels correlate with increased risk of CVD and CV mortality in men. 388 
Testosterone replacement therapy (TRT) in hypogonadism moderates metabolic components associated 389 
with CV risk, but it remains unclear whether low testosterone is an actual cause-effect relationship. 390 
The androgen receptors are present in cardiac myocytes from multiple species, including men and 391 
women. Androgen exerts a hypertrophic effect via a direct AR-mediated pathway, while loss of 392 
androgens due to castration in men or AR antagonist remarkably reduces cardiac hypertrophy and 393 
fibrosis. In clinical setting, male patients with heart failure present deficiencies in circulating androgens, 394 
including testosterone, and the androgen level is an independent predictor of poor outcome.65  395 
Androgens regulate the cGMP-specific phosphodiesterase 5 (PDE5) expression and functional activity in 396 
cardiac tissue. PDE5 is overexpressed in cardiac hypertrophy and in ischemic cardiomyopathy. PDE5 397 
inhibitors have provided cardioprotection against a broad range of heart diseases in experimental and 398 
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clinical studies and are discussed as new treatment options for heart failure.66 However, a large clinical 399 
trial testing the efficacy of PDE5 inhibitors in patients with heart failure, RELAX, mainly enrolled male 400 
patients and failed. After the failure of the RELAX trial, animal experimental work revealed the reason 401 
why the trial design was less than optimal. The PDE5 inhibitor sildenafil ameliorates cardiac failure 402 
caused by Gαq overexpression or pressure overload through an estrogen-dependent mechanism in 403 
female but not male mice.67 This observation shows the importance of quality pre-clinical work and the 404 
need for sex-specific consideration in general and in the use of PDE5 inhibitors in heart failure. The 405 
registered “RECOGITO” trial (NCT01803828) has subsequently been designed to measure gender 406 
differences in response to PDE5i in cardiac remodeling occurring in patients with type 2 diabetes.  407 

Principles for basic research on sex differences 408 

Study primary cells of both sexes  409 
Cultured cells are largely used to identify molecular-signaling pathways. Nonetheless, recent surveys of 410 
the literature report poor acknowledgement of the sex of the cells. In a review of the ten cardiovascular 411 
journals with impact factor, only ≈20-28% reported the sex of cells.68 In a survey of a recent issue of the 412 
American Journal of Physiology Cell Physiology, 75% of all publications did not report the sex of cell lines 413 
or animals.69 Studying differences in primary cell lines would be of valuable interest to decipher 414 
hormonally driven from intrinsic differences in male and female cells unrelated to hormonal exposure.69  415 
The development of high-throughput screening assays to identify and develop drugs for various human 416 
diseases is largely based on the use of cell lines or primary cells. Considering the sex disparity in disease 417 
severity and response to drugs, the question of whether the screening should be made on male or 418 
female cells or on both sexes is important and must be included in the interpretation of results.69 419 
Indeed, many stroma cells produce sex hormones, express their receptors and change during culture. 420 
Estrogen receptors vary during culture passage at least in rat aortic vascular smooth muscle cells.70 421 
Permanent cell lines are reported to lose their sex chromosomes. Therefore, sex chromosome 422 
complement of the cells and production and expression of sex hormones in the cells under study needs 423 
to be determined before analysis.  424 

Study animals of both sexes  425 
The large majority of studies using experimental animals including transgenic ones use only males. Most 426 
male biases are encountered in pharmacology, physiology and neuroscience, and female bias in 427 
immunology.1, 56 For example, some of heart failure animal models present major sex differences and 428 
similar differences are found in other diseases.5 Today, animal testing is commonly used in preclinical 429 
studies for drug development. It is therefore of extraordinary relevance and importance to understand 430 
and to validate these tests for each sex. However, inclusion of sex needs caution when extrapolating to 431 
humans. For example, in contrast to humans, in some mouse strains, male animals are more susceptible 432 
to type 2 diabetes mellitus and have more severe disease than females.71 This is however not true for all 433 
strains and some studies indicate that tissue injury in diabetes in females may occur with less 434 
pronounced hyperglycemia and glucose intolerance.72 Additionally, particularly in the rat, females show 435 
less ischemia–reperfusion injury; however, this is not observed in all animal studies.73 436 
The argument that females are more variable due to estrus cycle and thus increase variability has been 437 
questioned.1, 56, 74, 75 Indeed, females are less variable than males for several endpoints and estrus cycle 438 
related variability does not need in general to be controlled in female mice.74, 75 On the opposite, 439 
variability may be increased when male and female sexes are mixed. Regular reassessment of animal 440 
models can help to identify sex differences and human relevance of each model for sex specific 441 
research. Finally, the international differences in the usage of soy in fabrication of experimental animal 442 
diets have sex specific effects on expression of cardiac pathology in particular.76  443 
In conclusion, accounting for sex (as well as other biological variables such as age and hormonal status) 444 
increases transparency and enhances reproducibility in results among laboratories.77  445 

Study genetic versus hormonal influence and include sex chromosomes in GWAS  446 
In recent years, two genetic mouse models have been developed to provide insights into the interaction 447 
of sex chromosomes and sex hormones. This is first the four core genotype (FCG) mice, with the 448 
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translocation of SRY gene on an autosome. This translocation results in two extra geno/phenotype 449 
combinations.78 In addition to WT females (XX) and males (XY), there are animals with two X 450 
chromosomes and testes (XXsry+ males) and animals with X and Y chromosomes with ovaries (XYsry- 451 
females). In these mice, the genetic sex does not correspond to their phenotypic sex, although they are 452 
still exposed to sex steroid hormones during development, but not appropriate for their karyotype. 453 
Another mouse model, steroidogenic factor 1 knockout mice (SF-1 KO), completely lack gonads due to 454 
gonadal agenesis early during development.79 Both of these models, FCG mice and SF-1 KO mice, have 455 
shed important information, e.g. about the contribution of sex chromosomes to the sexual 456 
differentiation of the brain and other organs. 457 
To detect genetic bases for sex differences, all chromosomes, including the sex chromosomes, must be 458 
included in genetic analysis. To overcome the hurdles of X chromosomal analyses, pipelines for 459 
analyzing X or Y chromosomal data within a standard GWAS have been established. By selecting specific 460 
algorithms and parameter settings, the analysis of X and Y chromosomal SNPs is manageable and gives 461 
new clues as to the genetics of complex diseases.17  462 

Strengths, weaknesses, opportunities and threats of present approaches  463 
At a time of personalized medicine and precision medicine, a special attention to sex specific 464 
mechanisms to unravel the impact of cellular XX vs XY chromosomes, and their interaction with effects 465 
of estrogens versus androgens during the fetal period and lifetime is needed for defining homogenous 466 
target groups. Strengths of sex specific approaches include the power to detect new pathways in 467 
females and males, and to describe better the effects of sex hormones and their interaction with age, 468 
ethnicity, and environmental conditions, to reduce variability in animal models by analyzing 469 
homogenous groups with well-defined sex and sex hormone status. (Fig. 7) 470 
Weaknesses arise from extrapolating reductionist findings from animal models to complex human 471 
beings. Naturally, the relevance of mice or rats for extrapolation to humans must be questioned. Sex 472 
differences interfere with genetic, i.e. strain differences. Moreover, adequate animal models for 473 
menopause transition are lacking. Surgical ovariectomy in young female mice eliminates all ovarian 474 
tissues and ovarian hormones, LH, FSH and progesterone, including testosterone synthesizing stroma 475 
cells, and not only ovarian follicles as is the case in natural menopause.80 476 
Problems arise since isolated cells and particularly permanent cell lines may modify or loose sex 477 
chromosomes, which can lead to very specific behavior and limit their usefulness. Thus, confirmation of 478 
the sex chromosome content of a cell line under investigation is mandatory. However, all preclinical 479 
research is subject to criticism for reductionist approaches and it may be overcome by careful and 480 
critical selection of models. 481 
Opportunities include the power to detect new drugs that fit women or men better, that may even act 482 
in females or males only and to understand new and hormone-driven mechanisms in pathophysiology.  483 
Threats arise from the misconception of researchers, and deficits in knowledge of suitable models and 484 
specific research tools, on the cost-effectiveness of the approach, and the limitations of the in vitro 485 
settings for modeling sex.2, 81 However, these questions are far not confined to sex differences but 486 
rather address all preclinical research. It must be acknowledged that studying sex requires expertise and 487 
knowledge to develop significant research hypotheses and highly specific tools to answer these 488 
questions.  489 
 490 

Views from non-European countries 491 

Views from Canada  492 
In 2010 the Canadian Institutes of Health Research (CIHR) began to require all grant applicants to 493 
answer questions about whether and how they address S&G in basic science research.82 CIHR’s Institute 494 
of Gender and Health recognizes that sex differences in the occurrence of pathologies and therapeutics 495 
is a complex interaction between biological factors (sex) and social, historical, psychological and 496 
environmental (gender) parameters.83 In 2010, less than 20% of basic scientists in Canada reported 497 
consideration of sex or gender. This number has since doubled, but remains unacceptably low as the 498 
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inclusion of sex in basic research drives discovery of disease mechanisms.84 For instance, Canadian 499 
scientists recently discovered that different immune cells mediate mechanical pain hypersensitivity in 500 
male and female mice, opening the door for new drug development that targets microglial pathways in 501 
males and T lymphocyte pathways in females.85 502 
In coming years, two measures will hold basic scientists to higher levels of accountability. Mandatory 503 
peer reviewer training will enable assessment of the appropriate integration of S&G in funded basic 504 
science protocols. Second, science journal editors will start adopting S&G reporting requirements in 505 
their editorial policies as per the Sex and Gender Equity in Reporting (SAGER) guidelines. Both of these 506 
levers will ensure that research results are accurate, reproducible and applicable to both sexes. 507 

Views from US  508 
In 1993, the National Institutes of Health (NIH) Revitalization Act mandated inclusion of women in 509 
clinical trials. However, in the legislation, there was no mention of basic human physiological functional 510 
studies or mechanistic studies utilizing isolated cells or tissues. In 2001, the Institute of Medicine, 511 
“Exploring the Biological Contribution of Human Health: Does Sex Matter?” focused attention on the 512 
need to consider sex as a biological variable from basic to translational research (Table 1). However, 513 
acceptance and consideration of sex as a biological variable was not embraced by the scientific 514 
community, a shortcoming which prompted the NIH to implement policies requiring investigators to 515 
account for S&G in the design and data analysis with sound scientific justification to study only one sex 516 
(NOT-OD-15-102: Consideration of Sex as a Biological Variable in NIH Funded Research and NOT-OD-15-517 
103: Enhancing Reproducibility through Rigor and Transparency). Implementation of these policies 518 
began in 2016.86 Long-term success of these policies will require careful monitoring and education to 519 
embed concepts of S&G into all levels of science education. Basic and clinical scientists continue to 520 
partner with advocacy groups such as the Society of Women’s Health Research and professional 521 
societies (e.g. Organization for the Study of Sex Differences, the American Physiological Society and the 522 
Endocrine Society) to increase research and reporting of data on S&G differences in basic and 523 
translational research. Online resources and methodological guides continue to be developed and are 524 
available to facilitate learning for undergraduate, graduate and health care professionals. A report of the 525 
National Heart, Lung, and Blood Institute Working Group on Sex Differences Research in Cardiovascular 526 
Disease has been launched recently that points the scientific questions and challenges for future 527 
research.87  528 

Views from Japan  529 
S&G differences on cardiovascular diseases were recognized in Japan at the annual meeting of Japanese 530 
College of Cardiology in 1999. The promoting members founded the predecessor of the Japanese 531 
Association for Gender-Specific Medicine that consisted of clinical and basic researchers among various 532 
fields in 2003. In 2010, the “Guidelines for Gender –Specific Cardiovascular Disease (JCS 2010)” has been 533 
issued by the Japanese Circulation Society. Another initiative in Japan that began in 2001 was the 534 
increase in number of outpatient clinics for women which are staffed by female physicians.  535 
On the other hand, S&G researches in basic and clinical science for disciplines other than cardiology are 536 
not substantially present in Japan. One reason is that there is not a suitable application category for S&G 537 
themes for grants funded by the Japanese Ministry of Education, Culture, Sports, Science and 538 
Technology. Another reason is themes and judges and funds for women’s health still favor gynecology 539 
and gynecologists. 540 
In addition to gynecology, S&G aspect of medicine affect all areas of women’s health. Likewise, S&G 541 
aspects of men’s health need to expand beyond urology. Japan is at a turning point in promoting S&G 542 
research. It is the time to take action and edify governmental granting agencies to fund S&G research. 543 

Options for the future 544 
For promoting sex-specific basic research, the definition of scientific excellence is a critical issue. 545 
Depending on the scientific culture, dominant thinking may be that excellent science is to define a new 546 
pathway per se and not to characterize, in which human subjects, females or males, young or old, it may 547 
be effective. This attitude may however change since scientists acquire more societal responsibility and 548 
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society requests pay-back from its investment in biomedical research. Consideration of S&G is a 549 
cornerstone for improving quality and reproducibility of basic and translational science. 550 
There is rising public, professional and regulatory awareness related to the importance of S&G Specific 551 
Medicine. Paradigms are being changed, research in the area of S&G topics is expanding, and high 552 
standard scientific meetings on the topic are being held worldwide and in many medical schools S&G 553 
Specific Medicine has been introduced into the curriculum. The International Society for Gender 554 
Medicine (www.isogem.com) includes currently eight national societies. S&G Specific Medicine is now 555 
being perceived as a major step in the improvement of the quality of medical care for men and women. 556 
Continuous efforts need to be invested in order to keep and increase this momentum and to increase 557 
our fundamental knowledge. Table 2 highlights the recommendations for future research in the field. 558 
 559 
 560 

Table 2 561 

Recommendations for future basic research 562 
 Consider sex in experimental design of basic research projects 563 
 Study both sexes in animal studies 564 
 Consider primary cells from both sexes and identify sex of cell lines 565 
 Study genetic, epigenetic and hormonal modifiers 566 
 Include sex chromosome in GWAS studies 567 
 Study pregnancy and related specific disorders specially CVD 568 
 Integrate data from studies of epigenetics, gene expression and protein abundance 569 
 Consider S&G in pharmacology and specific drug design 570 
 Sex as well as species should be mentioned in the titles of articles 571 
 Scientific journals should consider introducing S&G in their editorial policy 572 
 Specific calls from each country and EC should be dedicated to S&G issues 573 
 S&G consideration should be included in biology and medicine university courses 574 
 575 

 576 
 577 
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Figure legends 582 
 583 
Figure 1: Sex and estrogen dependent mechanisms, affected organs and disease entities in CVD, as 584 
reviewed recently.3 585 
 586 
Figure 2: Mechanisms that contribute to sex differences during development and throughout life in 587 
experimental animals and humans. Sex hormones, including gonadal and extra-gonadal sex hormones 588 
change in their activity during lifetime (yellow bars) and exert direct effects at different developmental 589 
stages of life. They also interact with genetic and epigenetic mechanisms (yellow/blue arrow). Genetic 590 
and epigenetic factors may contribute to sex differences in the absence of sex hormones (blue bars) 591 
during lifetime.  592 
 593 
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Figure 3: Effect of sex and estrogen in cardiovascular cells. Figure depicts the organelles of the cell 594 
where sex differences are apparent: in signaling from receptor tyrosine kinase (RTK) and G-protein 595 
coupled receptor (GPCR) to the nucleus, in sarcoplasmic reticulum Ca2+ handling, at the contractile 596 
elements, in the mitochondria, in nuclear gene transcription, ribosomal function, in autophagy and 597 
protein degradation. For details see text and ref. 4, 5  598 
Abbreviations: ER, estrogen receptor; GSK3β, glycogen synthase kinase 3β; HSL, hormone-sensitive 599 
lipase; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NOS, nitric 600 
oxide synthase; PI3K, phosphatidylinositol 3-kinase; PTEN, phosphatase and tensin homolog; Glut-1, 601 
glucose transporter 1; RTK, receptor tyrosine kinase, GPR30, G protein-coupled receptor 30; GPCR, G-602 
protein-coupled receptor, Akt. 603 
 604 
Figure 4. Schematic representation of sexual-dimorphism in mitochondria.  605 
Estrogen by binding to the estrogen receptors (ERα, ERβ, GPR30) can activate mitochondrial biogenesis 606 
by upregulating the co-activator of mitochondrial biogenesis PGC-1α and its downstream cascade, 607 
Estrogen receptors α and β are also present in mitochondria and may directly activate mitochondrial 608 
DNA (mtDNA) transcription and replication. ERs can also modify mitochondrial function by non-genomic 609 
effects (dotted line) involving known (MAPK, PI3K) and unknown signaling pathways. Female 610 
mitochondria produce more energy, utilize more fatty acid and are able to handle more calcium and to 611 
undergo increased autophagy (in red) than their male counterparts. Male mitochondria release more 612 
free radicals and proapoptotic signals (in blue).  613 
 614 
Figure 5: Summary of 17β-Estradiol (E2) and estrogen receptor (ER)-mediated effects on pro-fibrotic 615 
mechanisms.  616 
In female sex (in red, left side), A) E2-activated ERα inhibits RhoA/ROCK/cofilin pathway leading to 617 
attenuated cardiac fibrosis. B) In addition, E2 and ERβ signal through protein kinase A (PKA) and AMP 618 
kinase (AMPK) to inhibit Rho-kinase activation of TGFβ-1-mediated pro-fibrotic actions. C) Further, E2 619 
bound ERα activates extracellular signal-regulated Kinase (ERK) 1/2, leading to phosphorylation of 620 
transcription factor Elk-1 resulting in down-regulation of Matrix-metalloproteinase-2 (MMP-2) by co-621 
repressor recruitment, observed in cardiac fibroblasts from both sexes. D) Moreover, in female cardiac 622 
fibroblasts, E2 activated ER downregulates collagen I, III and pro-fibrotic micro RNA (miRNA) network 623 
expression.  624 
In male cells (in blue, right side), E) in contrast, E2/ER up-regulate collagens and miRNA, leading to 625 
higher expression of pro-fibrotic miRNA network, inhibition of Sprouty 1 (SPRY1), rasa1 and rasa2 626 
leading to higher activation of ERK1/2 and further down-stream pro-fibrotic signaling. Grb2: growth 627 
factor receptor-bound protein 2; Co-R: Co-repressor; Co-A: Co-activator; RTK: Receptor protein-tyrosine 628 
kinase. See 4 for review and references.  629 
 630 
Figure 6: Example of sex differences in preclinical research. Survival of melusin overexpressing (OE) 631 
mice after myocardial infarction in comparison with untreated controls. A) whole group, males and 632 
females, b) males only, c) females only. Survival in the whole mixed sex group is significantly improved, 633 
even though females do not benefit.58  634 
 635 
Figure 7: Strengths, weaknesses, opportunities and threats – SWOT analysis for including sex specific 636 
aspects in basic research.  637 

638 
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