117 research outputs found

    Exotic spin, charge and pairing correlations of the two-dimensional doped Hubbard model: a symmetry entangled mean-field approach

    Full text link
    Intertwining of spin, charge and pairing correlations in the repulsive two-dimensional Hubbard model is shown through unrestricted variational calculations, with projected wavefunctions free of symmetry breaking. A crossover from incommensurate antiferromagnetism to stripe order naturally emerges in the hole-doped region when increasing the on-site coupling. Although effective pairing interactions are identified, they are strongly fragmented in several modes including d-wave pairing and more exotic channels related to an underlying stripe. We demonstrate that the entanglement of a mean-field wavefunction by symmetry restoration can largely account for interaction effects.Comment: Minor corrections, one reference adde

    Helicity Modulus and Effective Hopping in the Two-Dimensional Hubbard Model Using Slave-Boson Methods

    Full text link
    The slave-boson mean-field method is used to study the two-dimensional Hubbard model. A magnetic phase diagram allowing for paramagnetism, weak- and strong ferromagnetism and antiferromagnetism, including all continuous and first-order transitions, is constructed and compared to the corresponding phase diagram using the Hartree-Fock approximation (HFA). Magnetically ordered regions are reduced by a factor of about 3 along both the t/Ut/U and density axes compared to the HFA. Using the spin-rotation invariant formulation of the slave-boson method the helicity modulus is computed and for half-filling is found to practically coincide with that found using variational Monte Carlo calculations using the Gutzwiller wave function. Off half-filling the results can be used to compare with Quantum Monte Carlo calculations of the effective hopping parameter. Contrary to the case of half-filling, the slave-boson approach is seen to greatly improve the results of the HFA when off half-filling. (Submitted to: Journal of Physics: Condensed Matter)Comment: 27 pages, LaTeX2e, 7 figures available upon request, INLO-PUB-10/9

    Rhodium Doped Manganites : Ferromagnetism and Metallicity

    Get PDF
    The possibility to induce ferromagnetism and insulator to metal transitions in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown for the first time. Colossal magnetoresistance (CMR) properties are evidenced for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to induce such properties is compared to the results obtained by chromium and ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure

    Interplay between incommensurate phases in the cuprates

    Full text link
    We establish the qualitative behavior of the incommensurability ϵ\epsilon, optimal domain wall filling ν\nu and chemical potential μ\mu for increasing doping by a systematic slave-boson study of an array of vertical stripes separated by up to d=11d=11 lattice constants. Our findings obtained in the Hubbard model with the next-nearest neighbor hopping t=0.15tt'=-0.15t agree qualitatively with the experimental data for the cuprates in the doping regime x1/8x\lesssim 1/8. It is found that tt' modifies the optimal filling ν\nu and triggers the crossover to the diagonal (1,1) spiral phase at increasing doping, stabilized already at x0.09x\simeq 0.09 for t=0.3tt'=-0.3t.Comment: 7 pages, 4 figures, EPL styl

    Magnetic ordering in the striped nickelate La5/3Sr1/3NiO4: A band structure point of view

    Full text link
    We report on a comprehensive study of the electronic and magnetic structure of the striped nickelate La5/3Sr1/3NiO4. The investigation is carried out using band structure calculations based on density functional theory. A magnetic structure compatible with experiment is obtained from spin-polarized calculations within the generalized gradient approximation (GGA), whereas inclusion of a local Coulomb interaction in the LDA+U framework results in a different ground state. The influence of the various interaction parameters is discussed in detail.Comment: 5 pages, 4 figures, 2 tables, accepted by Europhys. Let

    Unconventional Hall effect in oriented Ca3_3Co4_4O9_9 thin films

    Full text link
    Transport properties of the good thermoelectric misfit oxide Ca3_3Co4_4O9_9 are examined. In-plane resistivity and Hall resistance measurements were made on epitaxial thin films which were grown on {\it c}-cut sapphire substrates using the pulsed laser deposition technique. Interpretation of the in-plane transport experiments relates the substrate-induced strain in the resulting film to single crystals under very high pressure (\sim 5.5 GPa) consistent with a key role of strong electronic correlation. They are confirmed by the measured high temperature maxima in both resistivity and Hall resistance. While hole-like charge carriers are inferred from the Hall effect measurements over the whole investigated temperature range, the Hall resistance reveals a non monotonic behavior at low temperatures that could be interpreted with an anomalous contribution. The resulting unconventional temperature dependence of the Hall resistance seems thus to combine high temperature strongly correlated features above 340 K and anomalous Hall effect at low temperature, below 100 K.Comment: Submitted to Physical Review B (2005

    Strongly correlated properties of the thermoelectric cobalt oxide Ca3Co4O9

    Full text link
    We have performed both in-plane resistivity, Hall effect and specific heat measurements on the thermoelectric cobalt oxide Ca3_{3}Co4_{4}O9_{9}. Four distinct transport regimes are found as a function of temperature, corresponding to a low temperature insulating one up to TminT_{min}\approx 63 K, a strongly correlated Fermi liquid up to TT^*\approx 140 K, with ρ=ρ0+AT2\rho=\rho_0+AT^2 and A3.63A\approx 3.63 102μΩcm/K210^{-2} \mu \Omega cm/K^{2}, followed by an incoherent metal with kFl1k_Fl\leq 1 and a high temperature insulator above T^{**}\approx 510 K . Specific heat Sommerfeld coefficient γ=93\gamma = 93 mJ/(mol.K2^{2}) confirms a rather large value of the electronic effective mass and fulfils the Kadowaki-Woods ratio A/γ20.45A/\gamma^2 \approx 0.45 105^{-5} μΩcm.K2/(mJ2mol2)\mu \Omega cm.K^2/(mJ^2mol^{-2}). Resistivity measurements under pressure reveal a decrease of the Fermi liquid transport coefficient A with an increase of TT^* as a function of pressure while the product A(T)2/aA(T^*)^2/a remains constant and of order h/e2h/e^2. Both thermodynamic and transport properties suggest a strong renormalization of the quasiparticles coherence scale of order TT^* that seems to govern also thermopower.Comment: 5 pages, 6 figures, accepted for publication in Physical Review

    Doping dependence of spin excitations in the stripe phase of high-Tc superconductors

    Full text link
    Based on the time-dependent Gutzwiller approximation for the extended Hubbard model we calculate the energy and momentum dependence of spin excitations for striped ground states. Our starting point correctly reproduces the observed doping dependence of the incommensurability in La-based cuprates and the dispersion of magnetic modes in the insulating parent compound. This allows us to make quantitative predictions for the doping evolution of the dispersion of magnetic modes in the stripe phase including the energy and intensity of the resonance peak as well as the velocity of the spin-wave like Goldstone mode. In the underdoped regime nh<1/8n_h<1/8 we find a weak linear dependence of ωres\omega_{res} on doping whereas the resonance energy significantly shifts to higher values when the charge concentration in the stripes starts to deviate from half-filling for nh>1/8n_h>1/8. The velocity cc is non-monotonous with a minimum at 1/8 in coincidence with a well known anomaly in TcT_c. Our calculations are in good agreement with available experimental data. We also compare our results with analogous computations based on linear spin-wave theory.Comment: 18 pages, 14 figures, revised and extended versio
    corecore