1,347 research outputs found

    Dynamic disorder in receptor-ligand forced dissociation experiments

    Full text link
    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch-bond" to the "slip-bond". Different from the previous efforts, in this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1(PSGL-1)−-P-selectin force rupture experiment [Marshall, {\it et al.}, (2003) Nature {\bf 423}, 190-193]. Our model agrees well to the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or {\it a priori} catch bond assumption is not essential.Comment: 4 pages, 2 figure

    Moderate deviations for the determinant of Wigner matrices

    Full text link
    We establish a moderate deviations principle (MDP) for the log-determinant log⁥∣det⁥(Mn)∣\log | \det (M_n) | of a Wigner matrix MnM_n matching four moments with either the GUE or GOE ensemble. Further we establish Cram\'er--type moderate deviations and Berry-Esseen bounds for the log-determinant for the GUE and GOE ensembles as well as for non-symmetric and non-Hermitian Gaussian random matrices (Ginibre ensembles), respectively.Comment: 20 pages, one missing reference added; Limit Theorems in Probability, Statistics and Number Theory, Springer Proceedings in Mathematics and Statistics, 201

    Analysis of Actin FLAP Dynamics in the Leading Lamella

    Get PDF
    BACKGROUND. The transport of labeled G-actin from the mid-lamella region to the leading edge in a highly motile malignant rat fibroblast line has been studied using fluorescence localization after photobleaching or FLAP, and the transit times recorded in these experiments were so fast that simple diffusion was deemed an insufficient explanation (see Zicha et al., Science, v. 300, pp. 142-145 [1]). METHODOLOGY/PRINCIPAL FINDINGS. We re-examine the Zicha FLAP experiments using a two-phase reactive interpenetrating flow formalism to model the cytoplasm and the transport dynamics of bleached and unbleached actin. By allowing an improved treatment of effects related to the retrograde flow of the cytoskeleton and of the geometry and finite thickness of the lamella, this new analysis reveals a mechanism that can realistically explain the timing and the amplitude of all the FLAP signals observed in [1] without invoking special transport modalities. CONCLUSIONS/SIGNIFICANCE. We conclude that simple diffusion is sufficent to explain the observed transport rates, and that variations in the transport of labeled actin through the lamella are minor and not likely to be the cause of the observed physiological variations among different segments of the leading edge. We find that such variations in labeling can easily arise from differences and changes in the microscopic actin dynamics inside the edge compartment, and that the key dynamical parameter in this regard is the so-called "dilatation rate" (the velocity of cytoskeletal retrograde flow divided by a characteristic dimension of the edge compartment where rapid polymerization occurs). If our dilatation hypothesis is correct, the transient kinetics of bleached actin relocalization constitute a novel and very sensitive method for probing the cytoskeletal dynamics in leading edge micro-environments which are otherwise very difficult to directly interrogate.Whitaker biomedical engineering research grant (RG-02-0714); National Institutes of Health (RO1 GM7200

    Transient Random Walks in Random Environment on a Galton-Watson Tree

    Get PDF
    We consider a transient random walk (Xn)(X_n) in random environment on a Galton--Watson tree. Under fairly general assumptions, we give a sharp and explicit criterion for the asymptotic speed to be positive. As a consequence, situations with zero speed are revealed to occur. In such cases, we prove that XnX_n is of order of magnitude nΛn^{\Lambda}, with Λ∈(0,1)\Lambda \in (0,1). We also show that the linearly edge reinforced random walk on a regular tree always has a positive asymptotic speed, which improves a recent result of Collevecchio \cite{Col06}

    Work probability distribution and tossing a biased coin

    Full text link
    We show that the rare events present in dissipated work that enters Jarzynski equality, when mapped appropriately to the phenomenon of large deviations found in a biased coin toss, are enough to yield a quantitative work probability distribution for Jarzynski equality. This allows us to propose a recipe for constructing work probability distribution independent of the details of any relevant system. The underlying framework, developed herein, is expected to be of use in modelling other physical phenomena where rare events play an important role.Comment: 6 pages, 4 figures

    Ising models on power-law random graphs

    Full text link
    We study a ferromagnetic Ising model on random graphs with a power-law degree distribution and compute the thermodynamic limit of the pressure when the mean degree is finite (degree exponent τ>2\tau>2), for which the random graph has a tree-like structure. For this, we adapt and simplify an analysis by Dembo and Montanari, which assumes finite variance degrees (τ>3\tau>3). We further identify the thermodynamic limits of various physical quantities, such as the magnetization and the internal energy

    Moderate deviation principle for ergodic Markov chain. Lipschitz summands

    Full text link
    For 1/2<α<1{1/2}<\alpha<1, we propose the MDP analysis for family Snα=1nα∑i=1nH(Xi−1),n≄1, S^\alpha_n=\frac{1}{n^\alpha}\sum_{i=1}^nH(X_{i-1}), n\ge 1, where (Xn)n≄0(X_n)_{n\ge 0} be a homogeneous ergodic Markov chain, Xn∈RdX_n\in \mathbb{R}^d, when the spectrum of operator PxP_x is continuous. The vector-valued function HH is not assumed to be bounded but the Lipschitz continuity of HH is required. The main helpful tools in our approach are Poisson's equation and Stochastic Exponential; the first enables to replace the original family by 1nαMn\frac{1}{n^\alpha}M_n with a martingale MnM_n while the second to avoid the direct Laplace transform analysis

    Dynamical fluctuations for semi-Markov processes

    Full text link
    We develop an Onsager-Machlup-type theory for nonequilibrium semi-Markov processes. Our main result is an exact large time asymptotics for the joint probability of the occupation times and the currents in the system, establishing some generic large deviation structures. We discuss in detail how the nonequilibrium driving and the non-exponential waiting time distribution influence the occupation-current statistics. The violation of the Markov condition is reflected in the emergence of a new type of nonlocality in the fluctuations. Explicit solutions are obtained for some examples of driven random walks on the ring.Comment: Minor changes, accepted for publication in Journal of Physics

    Duality and fluctuation relations for statistics of currents on cyclic graphs

    Full text link
    We consider stochastic motion of a particle on a cyclic graph with arbitrarily periodic time dependent kinetic rates. We demonstrate duality relations for statistics of currents in this model and in its continuous version of a diffusion in one dimension. Our duality relations are valid beyond detailed balance constraints and lead to exact expressions that relate statistics of currents induced by dual driving protocols. We also show that previously known no-pumping theorems and some of the fluctuation relations, when they are applied to cyclic graphs or to one dimensional diffusion, are special consequences of our duality.Comment: 2 figure, 6 pages (In twocolumn). Accepted by JSTA

    Ensemble Inequivalence in Mean-field Models of Magnetism

    Full text link
    Mean-field models, while they can be cast into an {\it extensive} thermodynamic formalism, are inherently {\it non additive}. This is the basic feature which leads to {\it ensemble inequivalence} in these models. In this paper we study the global phase diagram of the infinite range Blume-Emery-Griffiths model both in the {\it canonical} and in the {\it microcanonical} ensembles. The microcanonical solution is obtained both by direct state counting and by the application of large deviation theory. The canonical phase diagram has first order and continuous transition lines separated by a tricritical point. We find that below the tricritical point, when the canonical transition is first order, the phase diagrams of the two ensembles disagree. In this region the microcanonical ensemble exhibits energy ranges with negative specific heat and temperature jumps at transition energies. These two features are discussed in a general context and the appropriate Maxwell constructions are introduced. Some preliminary extensions of these results to weakly decaying nonintegrable interactions are presented.Comment: Chapter of the forthcoming "Lecture Notes in Physics" volume: ``Dynamics and Thermodynamics of Systems with Long Range Interactions'', T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens Eds., Lecture Notes in Physics Vol. 602, Springer (2002). (see http://link.springer.de/series/lnpp/
    • 

    corecore