1,352 research outputs found

    Baby Dust to All! Identity Construction in Two-Week Wait Online Discussion Forums

    Get PDF
    Women with a self-identified infertility status sometimes choose to address this status by seeking medical intervention. There are a variety of methods available when attempting to conceive using medical treatments, with the choice heavily dependent on the health of each partner. A common first approach by reproductive endocrinologists is that of intrauterine insemination, or IUI. Women undergoing IUI invest significant time and money into the process and often must undergo procedures or take medication that can be enormously distressing. Once the IUI is complete, the woman must wait an emotional two weeks before she finds out if she is pregnant or not. One important way women are dealing with the emotional turmoil inherent in the two-week wait, 2WW, is through online participation in topically organized forums devoted to this specific timeframe. As such, this study uses a constant comparative method to analyze how identities are constructed in two-week wait, 2WW, online forums. My findings yield women willing to construct support giving and support seeking identities to be a part of their current in-group, those in 2WW forums, inasmuch as it will help them get into their desired out-group—the currently pregnant

    Leaf Area and Structural Changes after Thinning in Even-Aged Picea rubens and Abies balsamea Stands in Maine, USA

    Get PDF
    We tested the hypothesis that changes in leaf area index (LAI m2 m−2) and mean stand diameter following thinning are due to thinning type and residual density. The ratios of pre- to postthinning diameter and LAI were used to assess structural changes between replicated crown, dominant, and low thinning treatments to 33% and 50% residual density in even-aged Picea rubens and Abies balsamea stands with and without a precommercial thinning history in Maine, USA. Diameter ratios varied predictably by thinning type: low thinnings were 0.7 but 1.0 . LAI change was affected by type and intensity of thinning. On average, 33% density reduction removed 50% of LAI. Overall reduction of LAI was generally greatest in dominant thinnings (54%), intermediate in crown thinnings (46%), and lowest in low thinnings (35%). Upon closer examination by crown classes, the postthinning distribution of LAI between upper and lower crown classes varied by thinning history, thinning method, and amount of density reduction

    Long-Term Landscape Changes in a Subalpine Spruce-Fir forest in Central Utah, USA

    Get PDF
    Background: In Western North America, increasing wildfire and outbreaks of native bark beetles have been mediated by warming climate conditions. Bioclimatic models forecast the loss of key high elevation species throughout the region. This study uses retrospective vegetation and fire history data to reconstruct the drivers of past disturbance and environmental change. Understanding the relationship among climate, antecedent disturbances, and the legacy effects of settlement-era logging can help identify the patterns and processes that create landscapes susceptible to bark beetle epidemics. Methods: Our analysis uses data from lake sediment cores, stand inventories, and historical records. Sediment cores were dated with radiometric techniques (14C and210Pb/137Cs) and subsampled for pollen and charcoal to maximize the temporal resolution during the historical period (1800 CE to present) and to provide environmental baseline data (last 10,500 years). Pollen data for spruce were calibrated to carbon biomass (C t/ha) using standard allometric equations and a transfer function. Charcoal samples were analyzed with statistical models to facilitate peak detection and determine fire recurrence intervals. Results: The Wasatch Plateau has been dominated by Engelmann spruce forests for the last ~10,500 years, with subalpine fir becoming more prominent since 6000 years ago. This landscape has experienced a dynamic fire regime, where burning events are more frequent and of higher magnitude during the last 3000 years. Two important disturbances have impacted Engelmann spruce in the historical period: 1) high-grade logging during the late 19th century; and (2) a high severity spruce beetle outbreak in the late 20th century that killed \u3e90 % of mature spruce (\u3e10 cm dbh). Conclusions: Our study shows that spruce-dominated forests in this region are resilient to a range of climate and disturbance regimes. Several lines of evidence suggest that 19th century logging promoted a legacy of simplified stand structure and composition such that, when climate became favorable for accelerated beetle population growth, the result was a landscape-scale spruce beetle outbreak. The lasting impacts of settlement-era landscape history from the Wasatch Plateau, UT may be relevant for other areas of western North America and Europe where sufficient host carrying capacity is important in managing for resistance and resilience to outbreaks

    Gridded Snow Water Equivalent Reconstruction for Utah Using Forest Inventory and Analysis Tree-Ring Data

    Get PDF
    Snowpack observations in the Intermountain West are sparse and short, making them difficult for use in depicting past variability and extremes. This study presents a reconstruction of April 1 snow water equivalent (SWE) for the period of 1850–1989 using increment cores collected by the U.S. Forest Service, Interior West Forest Inventory and Analysis program (FIA). In the state of Utah, SWE was reconstructed for 38 snow course locations using a combination of standardized tree-ring indices derived from both FIA increment cores and publicly available tree-ring chronologies. These individual reconstructions were then interpolated to a 4-km grid using an objective analysis with elevation correction to create an SWE product. The results showed a significant correlation with observed SWE as well as good correspondence to regional tree-ring-based drought reconstructions. Diagnostic analysis showed statewide coherent climate variability on inter-annual and inter-decadal time-scales, with added geographical details that would not be possible using courser pre-instrumental proxy datasets. This SWE reconstruction provides water resource managers and forecasters with better spatial resolution to examine past variability in snowpack, which will be important as future hydroclimatic variability is amplified by climate change

    Validation Results: Utah and Western Sierra Variants of the Forest Vegetation Simulator

    Get PDF
    The Forest Vegetation Simulator (FVS) is the most widely available and used growth and yield model in the US. It is used in both forest management and research and the basic model framework is integrated with post-processors which can be used for many useful analyses (e.g., fire effects, bark beetle susceptibility, etc.). Recent identification of the nomenclature and a basic validation procedure has resulted in a nation-wide effort to objectively test individual FVS variants following a specific protocol (FVS Validation Subcommittee 2009). Despite the huge range of possibilities for model use, and some independent testing of various model components, (e.g., Pokharel and Froese 2009; Vacchiano et al. 2008) and variants (Lacerte et al. 2004) a comprehensive evaluation of the basic model output has yet to be done. In this project, deliverables identified as necessary to inform an appropriate model testing procedure included: (1) data set description; (2) model verification; (3) model validation; and (4) model sensitivity analysis

    Building Resistance and Resilience: Regeneration Should Not be Left to Chance

    Get PDF
    Contemporary forest planning has tasked managers with developing goals associated with resistance and resilience. In practice, silviculturists use forest structure and tree species composition to characterize goals and desired future conditions, write prescriptions, and monitor outcomes associated with resistance and resilience. Although rarely discussed in the exploding literature relating to forest resistance and resilience, silvicultural regeneration methods are important and underutilized tools to meet these goals. We propose alternative silvicultural systems for building resistance and resilience to two common large-scale bark beetle disturbance agents in the Intermountain West, United States: mountain pine beetle (Dendroctonus ponderosae Hopkins) and spruce beetle (Dendroctonus rufipennis Kirby). Shelterwood, and shelterwood-with-reserves, silvicultural systems provide the desirable facilitative characteristics of a mature overstory on maintaining advance reproduction and the establishment of new cohorts of desirable tree species. These also allow the timely regeneration of large treatment areas necessary to rapidly promote desired future conditions in the face of inevitable disturbance. When implemented proactively, regeneration treatments allow silviculturists to take advantage of currently existing vegetation for the creation of age class and tree species diversity. In general, these examples illustrate the need for proactive planning for regeneration in response to any disturbance where desired future conditions include particular species. Furthermore, we argue that timely silvicultural interventions that focus on regenerating trees may be a key factor in achieving goals relating to resilience to specific disturbance types. Waiting until after the disturbance has occurred could result in the lost opportunity to establish desired species composition or stand structure—and may well result in a considerable restoration challenge

    The Aemulus Project III: Emulation of the Galaxy Correlation Function

    Get PDF
    Using the N-body simulations of the AEMULUS Project, we construct an emulator for the non-linear clustering of galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework, accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy bias parameters. We demonstrate that our emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1} Mpc, and recovers the true cosmology when tested against independent simulations. Our primary parameters of interest are related to the growth rate of structure, f, and its degenerate combination fsigma_8. Using this emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are included in the analysis, all the way down to 0.1 h^{-1} Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc scales alone are more than a factor of two tighter than those from the fiducial BOSS analysis of redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space clustering allows us to break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone for a BOSS-like analysis. The current AEMULUS simulations limit this model to surveys of massive galaxies. Future simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage is available at https://aemulusproject.github.io ; typo in Figure 7 and caption updated, results unchange

    The Aemulus Project I: Numerical Simulations for Precision Cosmology

    Get PDF
    The rapidly growing statistical precision of galaxy surveys has lead to a need for ever-more precise predictions of the observables used to constrain cosmological and galaxy formation models. The primary avenue through which such predictions will be obtained is suites of numerical simulations. These simulations must span the relevant model parameter spaces, be large enough to obtain the precision demanded by upcoming data, and be thoroughly validated in order to ensure accuracy. In this paper we present one such suite of simulations, forming the basis for the AEMULUS Project, a collaboration devoted to precision emulation of galaxy survey observables. We have run a set of 75 (1.05 h^-1 Gpc)^3 simulations with mass resolution and force softening of 3.51\times 10^10 (Omega_m / 0.3) ~ h^-1 M_sun and 20 ~ h^-1 kpc respectively in 47 different wCDM cosmologies spanning the range of parameter space allowed by the combination of recent Cosmic Microwave Background, Baryon Acoustic Oscillation and Type Ia Supernovae results. We present convergence tests of several observables including spherical overdensity halo mass functions, galaxy projected correlation functions, galaxy clustering in redshift space, and matter and halo correlation functions and power spectra. We show that these statistics are converged to 1% (2%) for halos with more than 500 (200) particles respectively and scales of r>200 ~ h^-1 kpc in real space or k ~ 3 h Mpc^-1 in harmonic space for z\le 1. We find that the dominant source of uncertainty comes from varying the particle loading of the simulations. This leads to large systematic errors for statistics using halos with fewer than 200 particles and scales smaller than k ~ 4 h^-1 Mpc. We provide the halo catalogs and snapshots detailed in this work to the community at https://AemulusProject.github.io.Comment: 16 pages, 12 figures, 3 Tables Project website: https://aemulusproject.github.io
    • …
    corecore