84 research outputs found
ALMA Solar Ephemeris Generator
An online software tool for the easy preparation of ephemerides of the solar
surface features is presented. It was developed as a helper tool for the
preparation of observations of the Sun with the Atacama Large
Millimeter/submillimeter Array (ALMA), but it can be used at other
observatories as well. The tool features an easy to use point-and-click
graphical user interface with the possibility to enter or adjust input
parameters, while the result is a table of predicted positions in the celestial
equatorial coordinate system, suitable for import into the ALMA Observing Tool
software. The tool has been successfully used for the preparation and execution
of solar observations with ALMA.Comment: Submitted to The Mining Geological Petroleum Engineering Bulletin
(see https://www.scopus.com/sourceid/101730), 7 pages, 2 figure
Solar differential rotation in the period 1964 - 2016 determined by the Kanzelh\"ohe data set
The main aim of this work is to determine the solar differential rotation by
tracing sunspot groups during the period 1964-2016, using the Kanzelh\"ohe
Observatory for Solar and Environmental Research (KSO) sunspot drawings and
white light images. Two procedures for the determination of the heliographic
positions were applied: an interactive procedure on the KSO sunspot drawings
(1964 - 2008, solar cycles nos. 20 - 23) and an automatic procedure on the KSO
white light images (2009 - 2016, solar cycle no. 24). For the determination of
the synodic angular rotation velocities two different methods have been used: a
daily shift (DS) method and a robust linear least-squares fit (rLSQ) method.
Afterwards, the rotation velocities had to be converted from synodic to
sidereal, which were then used in the least-squares fitting for the solar
differential rotation law. For the test data from 2014, we found the rLSQ
method for calculating rotational velocities to be more reliable than the DS
method. The best fit solar differential rotation profile for the whole time
period is = (14.47 0.01) - (2.66 0.10)
(deg/day) for the DS method and = (14.50 0.01) - (2.87
0.12) (deg/day) for the rLSQ method. A barely noticeable north -
south asymmetry is observed for the whole time period 1964 - 2016 in the
present paper. Rotation profiles, using different data sets (e.g. Debrecen
Photoheliographic Data, Greenwich Photoheliographic Results), presented by
other authors for the same time periods and the same tracer types, are in good
agreement with our results. Therefore, the KSO data set is suitable for the
investigation of the long-term variabilities in the solar rotation profile
First analysis of solar structures in 1.21 mm full-disc ALMA image of the Sun
Various solar features can be seen on maps of the Sun in the mm and sub-mm
wavelength range. The recently installed Atacama Large Millimeter/submillimeter
Array (ALMA) is capable of observing the Sun in that wavelength range with an
unprecedented spatial, temporal and spectral resolution. To interpret solar
observations with ALMA the first important step is to compare ALMA maps with
simultaneous images of the Sun recorded in other spectral ranges. First we
identify different structures in the solar atmosphere seen in the optical, IR
and EUV parts of the spectrum (quiet Sun (QS), active regions (AR), prominences
on the disc, magnetic inversion lines (IL), coronal holes (CH) and coronal
bright points (CBPs)) in a full disc solar ALMA image. The second aim is to
measure the intensities (brightness temperatures) of those structures and
compare them with the corresponding QS level. A full disc solar image at 1.21
mm obtained on December 18, 2015 during a CSV-EOC campaign with ALMA is
calibrated and compared with full disc solar images from the same day in
H\alpha, in He I 1083 nm core, and with SDO images (AIA at 170 nm, 30.4 nm,
21.1 nm, 19.3 nm, and 17.1 nm and HMI magnetogram). The brightness temperatures
of various structures are determined by averaging over corresponding regions of
interest in the ALMA image. Positions of the QS, ARs, prominences on the disc,
ILs, CHs and CBPs are identified in the ALMA image. At 1.21 mm ARs appear as
bright areas (but sunspots are dark), while prominences on the disc and CHs are
not discernible from the QS background, although having slightly less intensity
than surrounding QS regions. ILs appear as large, elongated dark structures and
CBPs correspond to ALMA bright points. These results are in general agreement
with sparse earlier measurements at similar wavelengths. The identification of
CBPs represents the most important new result.Comment: 9 pages, 3 figure
Comparison of the sidereal angular velocity of subphotospheric layers and small bright coronal structures during the declining phase of solar cycle 23
Context. We compare solar differential rotation of subphotospheric layers
derived from local helioseismology analysis of GONG++ dopplergrams and the one
derived from tracing small bright coronal structures (SBCS) using EIT/SOHO
images for the period August 2001 - December 2006, which correspond to the
declining phase of solar cycle 23. Aims. The study aims to find a relationship
between the rotation of the SBCS and the subphotospheric angular velocity. The
northsouth asymmetries of both rotation velocity measurements are also
investigated. Methods. Subphotospheric differential rotation was derived using
ring-diagram analysis of GONG++ full-disk dopplergrams of 1 min cadence. The
coronal rotation was derived by using an automatic method to identify and track
the small bright coronal structures in EIT full-disk images of 6 hours cadence.
Results. We find that the SBCS rotate faster than the considered upper
subphotospheric layer (3Mm) by about 0.5 deg/day at the equator. This result
joins the results of several other magnetic features (sunspots, plages,
faculae, etc.) with a higher rotation than the solar plasma. The rotation rate
latitudinal gradients of the SBCS and the subphotospheric layers are very
similar. The SBCS motion shows an acceleration of about 0.005 deg/day/month
during the declining phase of solar cycle 23, whereas the angular velocity of
subsurface layers does not display any evident variation with time, except for
the well known torsional oscillation pattern. Finally, both subphotospheric and
coronal rotations of the southern hemisphere are predominantly larger than
those of the northern hemisphere. At latitudes where the north-south asymmetry
of the angular velocity increases (decreases) with activity for the SBCS, it
decreases (increases) for subphotospheric layers.Comment: 6pages, 8 figures, Accepted for publication in Astronomy and
Astrophysic
Study of Distribution and Asymmetry of Solar Active Prominences During Solar Cycle 23
In this paper we present the results of a study of the spatial distribution
and asymmetry of solar active prominences (SAP) for the period 1996-2007 (solar
cycle 23). For more meaningful statistical analysis we have analysed the
distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR,
DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The north-south
(N-S) latitudinal distribution shows that the SAP events are most prolific in
the 21-30degree slice in the northern and southern hemispheres and east-west
(E-W) longitudinal distribution study shows that the SAP events are most
prolific (best visible) in the 81-90degree slice in the eastern and western
hemispheres. It has been found that the SAP activity during this cycle is low
compared to previous solar cycles. The present study indicates that during the
rising phase of the cycle the number of SAP events were roughly equal on the
north and south hemispheres. However, activity on the southern hemisphere has
been dominant since 1999. Our statistical study shows that the N-S asymmetry is
more significant then the E-W asymmetry.Comment: 21 pages 5 figures; Published online; 02 October, 2009; Solar Physics
Journa
A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups
Using the Solar Optical Observing Network (SOON) sunspot-group data for the
period 1985-2010, the variations in the annual mean equatorial-rotation rates
of the sunspot groups are determined and compared with the known variations in
the solar equatorial-rotation rates determined from the following data: i) the
plasma rotation rates at 0.94Rsun, 0.95Rsun,...,1.0Rsun measured by Global
Oscillation Network Group (GONG) during the period 1995-2010, ii) the data on
the soft X-ray corona determined from Yohkoh/SXT full disk images for the years
1992-2001, iii) the data on small bright coronal structures (SBCS) which were
traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the
period 1998-2006, and iv) the Mount Wilson Doppler-velocity measurements during
the period 1986-2007. A large portion (up to approximate 30 deg latitude) of
the mean differential-rotation profile of the sunspot groups lies between those
of the internal differential-rotation rates at 0.94Rsun and 0.98Rsun.The
variation in the yearly mean equatorial-rotation rate of the sunspot groups
seems to be lagging that of the equatorial-rotation rate determined from the
GONG measurements by one to two years.The amplitude of the latter is very
small.The solar-cycle variation in the equatorial-rotation rate of the solar
corona closely matches that determined from the sunspot-group data.The
variation in the equatorial-rotation rate determined from the Mount Wilson
Doppler-velocity data closely resembles the corresponding variation in the
equatorial-rotation rate determined from the sunspot-group data that included
the values of the abnormal angular motions (> 3 deg per day) of the sunspot
groups. Implications of these results are pointed out.Comment: 22 pages, 10 figures, accepted by Solar Physic
How Friendship Network Characteristics Influence Subjective Well-Being
This article explores how friendship network characteristics influence subjective well-being (SWB). Using data from the 2003 General Social Survey of Canada, three components of the friendship network are differentiated: number of friends, frequency of contact, and heterogeneity of friends. We argue that these characteristics shape SWB through the benefits they bring. Benefits considered are more social trust, less stress, better health, and more social support. Results confirm that higher frequency of contacts and higher number of friends, as well as lower heterogeneity of the friendship network are related to more social trust, less stress, and a better health. Frequency of contact and number of friends, as well as more heterogeneity of the friendship network increase the chance of receiving help from friends. With the exception of receiving help from friends, these benefits are in turn related to higher levels of SWB. Only the frequency of meeting friends face-to-face has a remaining positive direct influence on SWB
Monthly sunspot number time series analysis and its modeling through autoregressive artificial neural network
This study reports a statistical analysis of monthly sunspot number time
series and observes non homogeneity and asymmetry within it. Using Mann-Kendall
test a linear trend is revealed. After identifying stationarity within the time
series we generate autoregressive AR(p) and autoregressive moving average
(ARMA(p,q)). Based on minimization of AIC we find 3 and 1 as the best values of
p and q respectively. In the next phase, autoregressive neural network
(AR-NN(3)) is generated by training a generalized feedforward neural network
(GFNN). Assessing the model performances by means of Willmott's index of second
order and coefficient of determination, the performance of AR-NN(3) is
identified to be better than AR(3) and ARMA(3,1).Comment: 17 pages, 4 figure
- …