73,636 research outputs found
Recursive Percentage based Hybrid Pattern Training for Supervised Learning
Supervised learning algorithms, often used to find the I/O relationship in data, have the tendency to be trapped in local optima as opposed to the desirable global optima. In this paper, we discuss the RPHP learning algorithm. The algorithm uses Real Coded Genetic Algorithm based global and local searches to find a set of pseudo global optimal solutions. Each pseudo global optimum is a local optimal solution from the point of view of all the patterns but globally optimal from the point of view of a subset of patterns. Together with RPHP, a Kth nearest neighbor algorithm is used as a second level pattern distributor to solve a test pattern. We also show theoretically the condition under which finding several pseudo global optimal solutions requires a shorter training time than finding a single global optimal solution. As the difficulty of curve fitting problems is easily estimated, we verify the capability of the RPHP algorithm against them and compare the RPHP algorithm with three counterparts to show the benefits of hybrid learning and active recursive subset selection. The RPHP shows a clear superiority in performance. We conclude our paper by identifying possible loopholes in the RPHP algorithm and proposing possible solutions
Observability for two dimensional systems
Sufficient conditions that a two-dimensional system with output is locally observable are presented. Known results depend on time derivatives of the output and the inverse function theorem. In some cases, no informaton is provided by these theories, and one must study observability by other methods. The observability problem is dualized to the controllability problem, and the deep results of Hermes on local controllability are applied to prove a theorem concerning local observability
A canonical form for nonlinear systems
The conceptions of transformation and canonical form have been much used to analyze the structure of linear systems. A coordinate system and a corresponding canonical form are developed for general nonlinear control systems. Their usefulness is demonstrated by showing that every feedback linearizable system becomes a system with only feedback paths in the canonical form
KN and KbarN Elastic Scattering in the Quark Potential Model
The KN and KbarN low-energy elastic scattering is consistently studied in the
framework of the QCD-inspired quark potential model. The model is composed of
the t-channel one-gluon exchange potential, the s-channel one-gluon exchange
potential and the harmonic oscillator confinement potential. By means of the
resonating group method, nonlocal effective interaction potentials for the KN
and KbarN systems are derived and used to calculate the KN and KbarN elastic
scattering phase shifts. By considering the effect of QCD renormalization, the
contribution of the color octet of the clusters (qqbar) and (qqq) and the
suppression of the spin-orbital coupling, the numerical results are in fairly
good agreement with the experimental data.Comment: 20 pages, 8 figure
Applications to aeronautics of the theory of transformations of nonlinear systems
The development of the transformation theory is discussed. Results and applications concerning the use of this design technique for automatic flight control of aircraft are presented. The theory examines the transformation of nonlinear systems to linear systems. The tracking of linear models by nonlinear plants is discussed. Results of manned simulation are also presented
Editorial -Special issue on adaptive multimedia computing
In recent years, there is an emerging research area in multimedia computing, with the increasing number of related work in scalable video, adaptive multimedia documents, adaptive multimedia services, to name just a few. This new trend comes about partly due to the increasing use of mobile media devices where media requirements could change among users and devices and at different times of reception or presentation, and partly due to the changing network conditions, where best-effort service is the general practice. Any change in Quality of Services (QoS) could imply a change in the delivery or scheduling of media contents. To complicate the matter, user interruptions or requirement changes during the communication process could also occur; for example, a user may not be satisfied with the current media quality and decide an upgrade in real time. The status quo is that this new research paradigm is beginning to take shape while no effort has been made to draw a roadmap for it. We could see some major research work missing, for example, formal methods or modeling of adaptive multimedi
Distinguishing Dynamical Dark Matter at the LHC
Dynamical dark matter (DDM) is a new framework for dark-matter physics in
which the dark sector comprises an ensemble of individual component fields
which collectively conspire to act in ways that transcend those normally
associated with dark matter. Because of its non-trivial structure, this DDM
ensemble --- unlike most traditional dark-matter candidates --- cannot be
characterized in terms of a single mass, decay width, or set of scattering
cross-sections, but must instead be described by parameters which describe the
collective behavior of its constituents. Likewise, the components of such an
ensemble need not be stable so long as lifetimes are balanced against
cosmological abundances across the ensemble as a whole. In this paper, we
investigate the prospects for identifying a DDM ensemble at the LHC and for
distinguishing such a dark-matter candidate from the candidates characteristic
of traditional dark-matter models. In particular, we focus on DDM scenarios in
which the component fields of the ensemble are produced at colliders alongside
some number of Standard-Model particles via the decays of additional heavy
fields. The invariant-mass distributions of these Standard-Model particles turn
out to possess several unique features that cannot be replicated in most
traditional dark-matter models. We demonstrate that in many situations it is
possible to differentiate between a DDM ensemble and a traditional dark-matter
candidate on the basis of such distributions. Moreover, many of our results
also apply more generally to a variety of other extensions of the Standard
Model which involve multiple stable or metastable neutral particles.Comment: 17 pages, LaTeX, 10 figure
- …
