799 research outputs found
Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction
Visual media are powerful means of expressing emotions and sentiments. The
constant generation of new content in social networks highlights the need of
automated visual sentiment analysis tools. While Convolutional Neural Networks
(CNNs) have established a new state-of-the-art in several vision problems,
their application to the task of sentiment analysis is mostly unexplored and
there are few studies regarding how to design CNNs for this purpose. In this
work, we study the suitability of fine-tuning a CNN for visual sentiment
prediction as well as explore performance boosting techniques within this deep
learning setting. Finally, we provide a deep-dive analysis into a benchmark,
state-of-the-art network architecture to gain insight about how to design
patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and
Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
Discovering conversational topics and emotions associated with Demonetization tweets in India
Social media platforms contain great wealth of information which provides us
opportunities explore hidden patterns or unknown correlations, and understand
people's satisfaction with what they are discussing. As one showcase, in this
paper, we summarize the data set of Twitter messages related to recent
demonetization of all Rs. 500 and Rs. 1000 notes in India and explore insights
from Twitter's data. Our proposed system automatically extracts the popular
latent topics in conversations regarding demonetization discussed in Twitter
via the Latent Dirichlet Allocation (LDA) based topic model and also identifies
the correlated topics across different categories. Additionally, it also
discovers people's opinions expressed through their tweets related to the event
under consideration via the emotion analyzer. The system also employs an
intuitive and informative visualization to show the uncovered insight.
Furthermore, we use an evaluation measure, Normalized Mutual Information (NMI),
to select the best LDA models. The obtained LDA results show that the tool can
be effectively used to extract discussion topics and summarize them for further
manual analysis.Comment: 6 pages, 11 figures. arXiv admin note: substantial text overlap with
arXiv:1608.02519 by other authors; text overlap with arXiv:1705.08094 by
other author
A sentiment analysis approach to increase authorship identification
Writing style is considered the manner in which an author expresses his thoughts, influenced by language characteristics, period, school, or nation. Often, this writing style can identify the author. One of the most famous examples comes from 1914 in Portuguese literature. With Fernando Pessoa and his heteronyms Alberto Caeiro, alvaro de Campos, and Ricardo Reis, who had completely different writing styles, led people to believe that they were different individuals. Currently, the discussion of authorship identification is more relevant because of the considerable amount of widespread fake news in social media, in which it is hard to identify who authored a text and even a simple quote can impact the public image of an author, especially if these texts or quotes are from politicians. This paper presents a process to analyse the emotion contained in social media messages such as Facebook to identify the author's emotional profile and use it to improve the ability to predict the author of the message. Using preprocessing techniques, lexicon-based approaches, and machine learning, we achieved an authorship identification improvement of approximately 5% in the whole dataset and more than 50% in specific authors when considering the emotional profile on the writing style, thus increasing the ability to identify the author of a text by considering only the author's emotional profile, previously detected from prior texts.FCT has supported this work – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019
Visual Affect Around the World: A Large-scale Multilingual Visual Sentiment Ontology
Every culture and language is unique. Our work expressly focuses on the
uniqueness of culture and language in relation to human affect, specifically
sentiment and emotion semantics, and how they manifest in social multimedia. We
develop sets of sentiment- and emotion-polarized visual concepts by adapting
semantic structures called adjective-noun pairs, originally introduced by Borth
et al. (2013), but in a multilingual context. We propose a new
language-dependent method for automatic discovery of these adjective-noun
constructs. We show how this pipeline can be applied on a social multimedia
platform for the creation of a large-scale multilingual visual sentiment
concept ontology (MVSO). Unlike the flat structure in Borth et al. (2013), our
unified ontology is organized hierarchically by multilingual clusters of
visually detectable nouns and subclusters of emotionally biased versions of
these nouns. In addition, we present an image-based prediction task to show how
generalizable language-specific models are in a multilingual context. A new,
publicly available dataset of >15.6K sentiment-biased visual concepts across 12
languages with language-specific detector banks, >7.36M images and their
metadata is also released.Comment: 11 pages, to appear at ACM MM'1
Mining Valence, arousal, and Dominance - Possibilities for detecting burnout and productivity?
Similar to other industries, the software engineering domain is plagued by psychological diseases such as burnout, which lead developers to lose interest, exhibit lower activity and/or feel powerless. Prevention is essential for such diseases, which in turn requires early identification of symptoms. The emotional dimensions of Valence, Arousal and Dominance (VAD) are able to derive a person's interest (attraction), level of activation and perceived level of control for a particular situation from textual communication, such as emails. As an initial step towards identifying symptoms of productivity loss in software engineering, this paper explores the VAD metrics and their properties on 700,000 Jira issue reports containing over 2,000,000 comments, since issue reports keep track of a developer's progress on addressing bugs or new features. Using a general-purpose lexicon of 14,000 English words with known VAD scores, our results show that issue reports of different type (e.g., Feature Request vs. Bug) have a fair variation of Valence, while increase in issue priority (e.g., from Minor to Critical) typically increases Arousal. Furthermore, we show that as an issue's resolution time increases, so does the arousal of the individual the issue is assigned to. Finally, the resolution of an issue increases valence, especially for the issue Reporter and for quickly addressed issues. The existence of such relations between VAD and issue report activities shows promise that text mining in the future could offer an alternative way for work health assessment surveys
Dual harm: an exploration of the presence and characteristics for dual violence and self-harm behaviour in prison
Objective: The study aimed to quantify the rate of dual-harm behaviour in comparison with sole self-harm or assault rates; with an analysis of the distinguishing features.
Method: Official data on in-prison incidents, demographic and offending information was analysed for two prisons in England.
Results: Proportions of up to 42% of offenders who assault others in prison will also engage in self-harm and vice versa. Dual harm prisoners will engage in a broader and greater frequency of prison incidents than either sole group; with dual-harm prisoners reflecting greater proportions of damage to property and fire setting. Connectedly, dual harm prisoners receive a far higher rate of adjudication. There were no differences in their time in prison, presence of serious violent offences or for the dual harm prisoners whether the first incident was self-harm or violence. An index offence of drug supply was less likely in the dual-harm group, with minor violence slightly more likely in longer sentence prisoners.
Implications: In-prison behaviour can assist in the identification of prisoners at dual-risk of harm. Greater inclusion of in-prison behaviour and awareness of dual-harm in research methodologies may assist in improving risk management. A wider use of joint risk assessment and single case management approach is suggested for prisoners with dual-harm profile
Team Players and Collective Performance: How Agreeableness Affects Team Performance Over Time
Previous research on teams has found that agreeableness is one of the strongest personality predictors of team performance, yet one of the weakest personality predictors of individual-level job performance. In this study, we examined why teams with more agreeable members perform better. Data were collected across 4 months at 5 points in time from 107 project teams. We found that agreeableness affects performance through communication and cohesion and that communication precedes cohesion in time. Furthermore, we found that virtualness moderated the relationships between agreeableness and communication, as well as between agreeableness and team performance, such that teams only benefitted from high levels of agreeableness when interacting face-to-face.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Movies emotional analysis using textual contents
In this paper, we use movies and series subtitles and applied text mining and Natural Language Processing methods to evaluate emotions in videos. Three different word lexicons were used and one of the outcomes of this research is the generation of a secondary dataset with more than 3658 records which can be used for other data analysis and data mining research. We used our secondary dataset to find and display correlations between different emotions on the videos and the correlation between emotions on the movies and users’ scores on IMDb using the Pearson correlation method and found some statistically significant correlations
Criminal narrative experience: relating emotions to offence narrative roles during crime commission
A neglected area of research within criminality has been that of the experience of the offence for the offender. The present study investigates the emotions and narrative roles that are experienced by an offender while committing a broad range of crimes and proposes a model of Criminal Narrative Experience (CNE). Hypotheses were derived from the Circumplex of Emotions (Russell, 1997), Frye (1957), Narrative Theory (McAdams, 1988) and its link with Investigative Psychology (Canter, 1994). The analysis was based on 120 cases. Convicted for a variety of crimes, incarcerated criminals were interviewed and the data were subjected to Smallest Space Analysis (SSA). Four themes of Criminal Narrative Experience (CNE) were identified: Elated Hero, Calm Professional, Distressed Revenger and Depressed Victim in line with the recent theoretical framework posited for Narrative Offence Roles (Youngs & Canter, 2012). The theoretical implications for understanding crime on the basis of the Criminal Narrative Experience (CNE) as well as practical implications are discussed
Determining emotional profile based on microblogging analysis
First Online 30 August 2019In general, groups of people are formed because of the similarities and affinities that members have with each other. Musical preferences, soccer teams or even similar behaviours are examples of similarities and affinities that motivate group formation. In social media, identifying these affinities is a difficult task because personal information is not easily identified. In this paper we present an alternative to identifying similarities between authors and their most frequent audience in Twitter, using emotional and grammatical writing style analysis. Through this study it is possible to define the creation of an emotional profile entirely based on the interactions of people, thus allowing software like chatbots to “learn emotions” and provide emotionally acceptable responses.This work has been supported by FCT – Fundação para a Ciéncia e Tecnologia within the Project Scope: UID/CEC/00319/2019
- …