6,546 research outputs found
Inertial dynamics of a general purpose rotor
The inertial dynamics of a fully articulated stiff rotor blade are derived with emphasis on equations that facilitate an organized programming approach for simulation applications. The model for the derivation includes hinge offset and six degrees of freedom for the rotor shaft. Results are compared with the flapping and lead-lag equations currently used in the Rotor Systems Research Aircraft simulation model and differences are analyzed
Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis
Applications of system identification methods to the prediction of helicopter stability, control and handling characteristics
A set of results on rotorcraft system identification is described. Flight measurements collected on an experimental Puma helicopter are reviewed and some notable characteristics highlighted. Following a brief review of previous work in rotorcraft system identification, the results of state estimation and model structure estimation processes applied to the Puma data are presented. The results, which were obtained using NASA developed software, are compared with theoretical predictions of roll, yaw and pitching moment derivatives for a 6 degree of freedom model structure. Anomalies are reported. The theoretical methods used are described. A framework for reduced order modelling is outlined
Dynamic modelling and estimation of the error due to asynchronism in a redundant asynchronous multiprocessor system
The use of Redundant Asynchronous Multiprocessor System to achieve ultrareliable Fault Tolerant Control Systems shows great promise. The development has been hampered by the inability to determine whether differences in the outputs of redundant CPU's are due to failures or to accrued error built up by slight differences in CPU clock intervals. This study derives an analytical dynamic model of the difference between redundant CPU's due to differences in their clock intervals and uses this model with on-line parameter identification to idenitify the differences in the clock intervals. The ability of this methodology to accurately track errors due to asynchronisity generate an error signal with the effect of asynchronisity removed and this signal may be used to detect and isolate actual system failures
Deformed Schrodinger symmetry on noncommutative space
We construct the deformed generators of Schroedinger symmetry consistent with
noncommutative space. The examples of the free particle and the harmonic
oscillator, both of which admit Schroedinger symmetry, are discussed in detail.
We construct a generalised Galilean algebra where the second central extension
exists in all dimensions. This algebra also follows from the Inonu--Wigner
contraction of a generalised Poincare algebra in noncommuting space.Comment: 9 pages, LaTeX, abstract modified, new section include
On Maximal Unbordered Factors
Given a string of length , its maximal unbordered factor is the
longest factor which does not have a border. In this work we investigate the
relationship between and the length of the maximal unbordered factor of
. We prove that for the alphabet of size the expected length
of the maximal unbordered factor of a string of length~ is at least
(for sufficiently large values of ). As an application of this result, we
propose a new algorithm for computing the maximal unbordered factor of a
string.Comment: Accepted to the 26th Annual Symposium on Combinatorial Pattern
Matching (CPM 2015
Equivariant quantization of orbifolds
Equivariant quantization is a new theory that highlights the role of
symmetries in the relationship between classical and quantum dynamical systems.
These symmetries are also one of the reasons for the recent interest in
quantization of singular spaces, orbifolds, stratified spaces... In this work,
we prove existence of an equivariant quantization for orbifolds. Our
construction combines an appropriate desingularization of any Riemannian
orbifold by a foliated smooth manifold, with the foliated equivariant
quantization that we built in \cite{PoRaWo}. Further, we suggest definitions of
the common geometric objects on orbifolds, which capture the nature of these
spaces and guarantee, together with the properties of the mentioned foliated
resolution, the needed correspondences between singular objects of the orbifold
and the respective foliated objects of its desingularization.Comment: 13 page
Henri Temianka correspondence, Gurs
https://digitalcommons.chapman.edu/tobin_gurs_et_al_correspondence/1006/thumbnail.jp
- …