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GEOMETRIC CHARACTERIZATION OF QUANTIZATION
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SYMBOL CALCULUS

D ∈ HomR(Γ(E), Γ(F ))loc
loc' HomR(C∞(U, Ē),C∞(U, F̄ ))loc

f ∈ C∞(U),e ∈ Ē , x ∈ U, ξ ∈ (Rm)∗

D(fe) =
∑

α Dα, x (e)∂α
1

x1 . . . ∂
αm

xm f
'
∑

α Dα, x

x

(e

e

)ξα
1

1 . . . ξα
m

m
= σaff(D)(ξ; e)

Differential operator
loc' polynomial, total affine symbol

D ∈ HomR(Γ(E), Γ(F ))loc
loc'

σaff(D) ∈ Γ(STU ⊗ E∗ ⊗ F )
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SYMBOL CALCULUS

Example:

Intertwining condition:

(LX (TD)− T (LX D)) (ω) = 0

Symbolic representation:

(X .T )(η; D)(ξ;ω)− 〈X , η〉 ((τζT )(η; D)) (ξ;ω)
−〈X , ξ〉 (τζ(T (η; D))) (ξ;ω) + T (η + ζ; XτζD)(ξ;ω)
−T (η; D)(ξ + ζ; ζ ∧ iXω) + T (η + ζ; D(·+ ζ; ζ ∧ iX ·))(ξ;ω) = 0

Applications:

Flato-Lichnerowicz, De Wilde-Lecomte: cohomology of vector
fields valued in differential forms
P: cohomology of the Nijenhuis-Richardson graded Lie algebra,
nonexistence of universal classes
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EQUIVARIANT QUANTIZATION OF VECTOR SPACES

M = Rm, D ∈ D(M), φ: coordinate change

D(f ) =
∑

α Dα, x ∂
α
x f σaff↔ σaff(D)(ξ) =

∑
α Dα, x ξ

α

l φ l φ
. . .

σaff↔ . . .

Non commutative, σaff(D) not intrinsic, σ(D) geometric meaning

Vector space isomorphism:

σ−1
aff : Pol(T ∗M) = Γ(STM) =: S(M)→ D(M)

Nonequivariance (global version):

∃φ ∈ Diff(M) : σ−1
aff ◦ φ 6= φ ◦ σ−1

aff
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EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

∃X ∈ X (M) : σ−1
aff ◦ LX 6= LX ◦ σ−1

aff

Definition of an

g-

equivariant quantization (EQ) on a vector
space [Lecomte, Ovsienko, 99]:

Q = σ−1
tot : S

δ=µ−λ

(M) = Γ(STM

⊗∆δTM

)
vs−isom→ D

λµ

(M),

such that

σ−1
tot ◦ LX = LX ◦ σ−1

tot ,∀X ∈

g ⊂

X (M)

and
σ ◦ σ−1

tot |Sk

δ

(M) = idSk

δ

(M) (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96: Dλλ(M) and Dµµ(M)
not isomorphic as X (M)-modules
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EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Some motivations:

Invariant star-products on T ∗M obtained as pullbacks by

Q~(P) = ~kQ(P),P ∈ Polk (T ∗M)

of the associative structure of the space of differential
operators

Classification of spaces of differential operators as
modules over Lie algebras of vector fields

Role of symmetries in relationship between classical and
quantum systems – complete geometric characterization
of quantization: a flat fixed G-structure on configuration
space guarantees existence and uniqueness of a global
g-equivariant quantization (where Lie(G) = g)
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PROJECTIVE AND CONFORMAL CASES

Maximal Lie subalgebras g ⊂ X (M), M = Rm:

Projective case: G = PGL(m + 1,R), g = sl(m + 1,R) can be
embedded as maximal Lie subalgebra sln+1 into X∗(M)
(Lecomte, Ovsienko, 99)

Conformal case: G = SO(p + 1,q + 1) (p + q = m),
g = o(p + 1,q + 1) can be embedded as maximal Lie
subalgebra op+1,q+1 into X∗(M) (Duval, Lecomte, Ovsienko, 99)

Other cases: ... (Boniver, Mathonet, 01)
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THE CASIMIR TECHNIQUE
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DIFFERENTIAL OPERATORS ACTING ON TENSOR FIELDS

Projectively equivariant quantization for differential
operators on differential forms [Boniver, Hansoul,
Mathonet, P, 02]
Efficiency of equivariant and standard affine symbol
calculus as classification tools for modules of differential
operators [P,04]
Automorphisms and derivations of classical and quantum
Poisson algebras [Grabowski, P, 04], [Grabowski, P, 05]

Difference with automorphisms of the classical and the
quantum Weyl algebra [Kanel, Kontsevich, 05]
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CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

Q : (Skp,LX )→ (Dk
p ' Skp,LX ): potential slm+1-EQ

Main observation:
Q ◦ C = C ◦Q

CP = αP ⇒ CQP = αQP

Ideas:
Diagonalization of C: Sk

p = Ak
p ⊕ Bk

p , eigenvalues αk
p, β

k
p

C − C = N (LX − LX )︸ ︷︷ ︸ = 1
m+1 ( δ Div δ∗ +δ∗Div δ)

Sk
p → Sk−1

p
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CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

N : Ak
p 3 P → NP ∈ Ak−1

p . Set QP = P + Q1P and try to define
Q1 : Ak

p → Ak−1
p .

Since

αk
pP+

∈Ak−1
p︷ ︸︸ ︷

αk
pQ1P= QCP = CQP = C(P + Q1P) =

(C + N) (P + Q1P) = αk
pP+

∈Ak−1
p︷ ︸︸ ︷

αk−1
p Q1P + NP +

∈Ak−2
p︷ ︸︸ ︷

NQ1P,

we get Q1P = 1
αk

p−α
k−1
p

1
m+1 (δDiv δ∗P)

and have to set QP = P +
∑k

`=1 Q`P, Q` : Ak
p → Ak−`

p

Q |Sk
p
= id +

∑k
`=1 Q`, Q` =(

1
m+1

)`((
Π1≤j≤`

1
αk

p−α
k−j
p

)
(δDiv δ∗)` +

(
Π1≤j≤`

1
βk

p−β
k−j
p

)
(δ∗Div δ)`

)
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EQUIVARIANT QUANTIZATION OF SMOOTH MANIFOLDS
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Projective structure on a manifold M

Projective structure straight lines geodesics no
canonical connection class of connections associated with
the same geodesics

Torsion-free linear connections ∇, ∇′ on M are projectively
equivalent, i.e. define the same geometric geodesics, if and
only if (H. Weyl)

∇′X Y −∇X Y = ω(X )Y + ω(Y )X ∈ X (M),

where X ,Y ∈ X (M), ω ∈ Ω1(M)

Projective structure on M = class [∇] of projectively equivalent
connections
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Quantization associated with a connection (A. Lichnerowicz,
star-products)

D ∈ Dk (Γ(E), Γ(F ))↔ P ∈ Γ(SkTM ⊗ E∗ ⊗ F )

∇: covariant derivative of E

∇k : Γ(E) 3 f → ∇k f ∈ Γ(SkT ∗M ⊗ E): iterated symmetrized

Qaff(∇)P : Γ(E) 3 f → (Qaff(∇)P) f = iP(∇k f ) ∈ Γ(F )
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Towards natural and projectively invariant quantization

There is no Q : S → D such that

Q ◦ φ∗ = φ∗ ◦Q,∀φ ∈ Diff(M)

i.e.

(Q(φ∗P)) (φ∗f ) = φ∗ ((QP)(f )) ,∀φ ∈ Diff(M)

Is there Q(∇) : S → D such that

(Q(φ∗∇)(φ∗P)) (φ∗f ) = φ∗ ((Q(∇)P)(f )) ,

for all local diffeomorphisms φ?
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Remarks

Example of the gauge principle
Q – problem: no solution
Q(∇) – problem: several solutions, standard ordering
prescription, Weyl ordering prescription (half-densities)

Group PGL(m + 1,R) does not preserve ∇, but the flows of
X ∈ slm+1 ⊂ X∗(Rm) preserve [∇]: the solution Q = σ−1

slm+1

of Lecomte and Ovsienko is intelligible,

if Q = Q[∇]

Additional requirement (uniqueness): Q = Q[∇], i.e. Q is
projectively invariant
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Definition (Lecomte 01):

A natural and projectively invariant quantization is a family

QM : C(M)× Sδ(M)→ Dλµ(M),

indexed by smooth manifolds M, s.th., for any ∇ ∈ C(M),

QM [∇] : Sδ(M)→ Dλµ(M)

is a vector space isomorphism that verifies

1 the usual normalization condition
2 for any local diffeomorphism φ of M,

(QM [φ∗∇](φ∗P)) (φ∗f ) = φ∗ ((QM [∇]P)(f )),

∀P ∈ Sδ(M),∀f ∈ Γ(∆λTM)

3 QM [∇] is independent of ∇ ∈ [∇]
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PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Remarks:

Generalization: If Q is a natural and projectively invariant
quantization, then QRm [∇0] (∇0: canonical flat connection)
is an sl(m + 1,R)-equivariant quantization

Functorial formulation: M. Bordemann wrote this definition
in the language of natural bundles and operators (see I.
Kolář, P. W. Michor, J. Slovǎk)
Existence results: M. Bordemann, 02; P. Mathonet, F.
Radoux, 05; S. Hansoul, 06; A. Cap, J. Silhan, 09
Techniques: Thomas-Whitehead connections, Cartan
connections, tractor calculus
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THE THOMAS-WHITEHEAD TECHNIQUE
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TOY MODEL

Example M := Sm

g ∈ G := GL(m + 1,R)

All g preserve the canonical connection of Rm+1, the induced
φg do usually not preserve the canonical LC-connection on Sm

M̃ := Rm+1\{0} → Sm =: M is a bundle with typical fiber R+
0

Lift the complex situation on M to the simpler situation on M̃:

Construct natural lifts ∇ → ∇̃, P → P̃, and f → f̃
Define a quantization Q[∇] by

(Q[∇](P)(f ))˜ :=Qaff(∇̃)(P̃)(f̃ )

Check if ∇̃ only depends upon [∇]
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TOY MODEL

The point is:

Standard affine quantization

Qaff(∇)(P)(f ) = iP (∇·f )

is natural, but not projectively invariant

Naturality of all lifts and naturality of Qaff entails naturality
of Q:

(Q[∇](P)(f ))˜= Qaff(∇̃)(P̃)(f̃ )(
Q[φ∗g∇](φ∗gP)(φ∗g f )

)̃
= Qaff(g∗∇̃)(g∗P̃)(g∗ f̃ )

= g∗Qaff(∇̃)(P̃)(f̃ )

= g∗ (Q[∇](P)(f ))˜

=
(
φ∗gQ[∇](P)(f )

)̃
Projective invariance of ∇̃ entails projective invariance of Q
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GENERAL CASE

Extension of the Sm-construction to an arbitrary M, dim M = m

M̃ :=

∆1TM = P1M ×GL(m,R) R

+
0

,
GL(m,R)× R

+
0

3 (g, r)→ g · r =| det g |−1 r ∈ R

+
0

:

rank 1

affine

bundle of

positive

1 – densities over M

M̃ × R+
0 3 ([u, r ], s)→ ρs[u, r ] = [u, rs] ∈ M̃: R+

0 – pb

∆λTM = M̃ ×R+
0
R,

R+
0 × R 3 (s, t)→ s.t = sλt :

line bundle of λ-densities over M

f ∈ Γ(∆λTM)↔ f̃ ∈ C∞(M̃)R+
0
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GENERAL CASE

Lifts P̃ and ∇̃ are technical

Essential remark: Natural and projectively invariant lift ∇̃ is
a connection of some known type

Study of projective equivalence of connections

Origins: Goes back to the twenties and thirties

Objective: Associate a unique connection to each
projective structure [∇]

First answer: Thomas-Whitehead projective connection
(T.Y. Thomas, J.H.C. Whitehead, O. Veblen)
Second answer: Cartan projective connection (E. Cartan)
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THOMAS-WHITEHEAD CONNECTIONS

A Thomas-Whitehead projective connection is a
torsion-free linear connection ∇̃ over M̃, such that

1 ∇̃E = 1
m+1 id

2 ρs∗
(
∇̃X Y

)
= ∇̃ρs∗Xρs∗Y , ∀X ,Y ∈ X (M̃)

Bordemann’s connection is a Thomas-Whitehead
connection

S. Hansoul extended the work of M. Bordemann from
tensor densities to sections of arbitrary vector bundles
associated with the principle bundle of linear frames
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THE CARTAN TECHNIQUE
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CARTAN CONNECTIONS

P2M = { j20(ψ) | ψ : 0 ∈ U ⊂ Rm → M, detψ∗0 6= 0 }:

2nd order frame bundle

G2
m = { j20(f ) | f : 0 ∈ U ⊂ Rm → Rm, f (0) = 0, det f∗0 6= 0 }:

structure group

G = PGL(m + 1,R) acts on RPm

H = G[em+1] ={(
A 0
α a

)
: A ∈ GL(m,R), α ∈ Rm∗,a 6= 0

}
/R0 id

acts locally on Rm by Rm ⊃ U 3 Z 7→ AZ
αZ+a ∈ Rm: H ⊂ G2

m
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CARTAN CONNECTIONS

Proposition:

Reductions P(M,H) of P2M to H ⊂ G2
m are 1-to-1 with

projective structures [∇]

Theorem:

To every projective structure [∇] ' P(M,H) is associated a
unique normal Cartan connection ω

Definition:

G: Lie group, H: closed subgroup, g,h: Lie algebras

P = P(M,H): PB s.th. dim M = dim G/H

A Cartan connection on P is a 1-form ω ∈ Ω1(P)⊗ g s.th.
r∗sω = Ad(s−1)ω (rs right action of s ∈ H)
ω(X h) = h (h ∈ h)
ωu : TuP → g (u ∈ P) is a vector space isomorphism (no
horizontal SB)

Norbert Poncin Equivariant quantization of orbifolds



EXISTENCE OF EQ VIA CARTAN CONNECTIONS

P = P(M,H) (! M̃): projective structure
ω (! ∇̃): normal Cartan connection

I Lifts S̃ of symbols and f̃ of densities to objects on
P = P(M,H):

Sk
δ (M) = Γ(SkTM ⊗∆δTM) = C∞(P1M,SkRm ⊗∆δRm)GL(m,R)

Γ(∆λTM) = C∞(P1M,∆λRm)GL(m,R)

(V , ρ): representation of GL(m,R)

C∞(P1M,V )GL(m,R)' C∞(P,V )H
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EXISTENCE OF EQ VIA CARTAN CONNECTIONS

I Idea:

(QM [∇](S)(f ))˜= Qaff(ω)(S̃)(f̃ ) = iS̃
(

(∇ω)k f̃
)

I Derivative associated with ω:

∇ω : C∞(P,V )→ C∞(P,Rm∗ ⊗ V )

g ∈ C∞(P,V ), u ∈ P, v ∈ Rm

(∇ωg) (u)(v) =
(

L

X (P)3X(ω,v)=ω−1v

g
)

(u) ∈ V

ωu ∈ Isom(TuP, g), g = sl(m + 1,R) ' Rm ⊕ gl(m,R)⊕ Rm∗ 3 v

(∇ω)k : C∞(P,V )→ C∞(P,SkRm∗ ⊗ V ): iterated symmetrized

I Problem:

f̃ ∈ C∞(P,∆λRm)H , (∇ω)k f̃ ∈ C∞(P,SkRm∗ ⊗∆λRm)

S̃ ∈ C∞(P,SkRm ⊗∆δ=µ−λRm)H

iS̃
(

(∇ω)k f̃
)
∈ C∞(P,∆µRm) : not H-equivariant
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)

I Derivative associated with ω:

∇ω : C∞(P,V )→ C∞(P,Rm∗ ⊗ V )

g ∈ C∞(P,V ), u ∈ P, v ∈ Rm

(∇ωg) (u)(v) =
(

LX (P)3X(ω,v)=ω−1v g
)

(u) ∈ V

ωu ∈ Isom(TuP, g), g = sl(m + 1,R) ' Rm ⊕ gl(m,R)⊕ Rm∗ 3 v

(∇ω)k : C∞(P,V )→ C∞(P,SkRm∗ ⊗ V ): iterated symmetrized

I Problem:

f̃ ∈ C∞(P,∆λRm)H , (∇ω)k f̃ ∈ C∞(P,SkRm∗ ⊗∆λRm)

S̃ ∈ C∞(P,SkRm ⊗∆δ=µ−λRm)H

iS̃
(

(∇ω)k f̃
)
∈ C∞(P,∆µRm)

: not H-equivariant
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EXISTENCE OF EQ VIA CARTAN CONNECTIONS

I Solution:

Add lower degree terms to S̃ ∈ C∞(P,SkRm ⊗∆δRm)H

Divω : C∞(P,SkRm ⊗∆δRm)→ C∞(P,Sk−1Rm ⊗∆δRm)

e`: canonical basis of Rm, ε`: dual basis in Rm∗

div
(∑

` X `e`
)

=
∑

j iεj∂x j

(∑
` X `e`

)
Divω S̃ =

∑
j iεj∇ωej

S̃

I Theorem:

For non critical δ,

(QM [∇](S)(f ))˜=
k∑
`=0

ck` i(Divω)`S̃

(
(∇ω)k−` f̃

)
defines a natural projectively invariant quantization, if the ck`
have some precise values
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QUANTIZATION OF SINGULAR SPACES
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QUANTIZATION AND REDUCTION

E. Noether’s theorem: Symmetries 1st integrals reduction
of (q1, . . . ,pn).

Reduced phase space: N/G, N = µ−1{0} singular space:
orbifold, stratified space...

Quantization:

S(N)
QN−→ D(N)

R ↓ ↓ R

S(N/G) ?
QN/G ?
−→ D(N/G) ?

Meta-principle: [Q,R] = 0

Problem: Construct S(N/G)..., and QN/G s.th. [Q,R] = 0
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FOLIATIONS AND DESINGULARIZATION

K. Richardson:

G compact Lie group acting on N

F regular Riemannian foliation on compact (M,g):

N/G ' M/F̄

Problem:

Solve the [Q,R]-problem for M/F̄

Method:

Use foliated and adapted geometries on (M,F) as
desingularization of M/F̄
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ADAPTED AND FOLIATED GEOMETRIES

Foliation atlas on M:

φi : Ui 3 m→ (x , y) ∈ Rp × Rq, x : leaf, y : transverse
φji := φjφ

−1
i : verify gluing condition

F : foliation
Nm(M,F) = TmM/TmF : normal bundle

Adapted and foliated geometric objects:

X |U = X a(x , y)∂xa + X b(y)∂yb ∈ Γ(TM): adapted vf

[X ]|U = [X b(y)∂yb ] ∈ Γ(N(M,F)) is ‘constant along the
leaves’: foliated vf

‘Projections’:

Adapted objects O2 of M
p→ foliated objects O1

p→ singular
objects O0 of M/F
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SINGULAR QUANTIZATION

Previous observation:

Adapted world in M
p2=R−→ singular world of M/F

Projected constructions:

Construct Q2 in M, Q1, and Q0 in M/F s.th.

Qi−1[∇i−1](Si−1)(fi−1) = Qi−1[p∇i ](pSi)(pfi) = p (Qi [∇i ](Si)(fi)) ,

which then implies that

Q0[R∇2](RS2)(Rf2) = R (Q2[∇2](S2)(f2)) ,

i.e. that
[Q,R] = 0
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ADAPTED AND FOLIATED QUANTIZATIONS

Tedious constructions in the adapted and foliated worlds:

Adapt the definitions of Cartan calculus
Prove that the vital parts of the classical theorems used by
the Cartan technique go through
Extend the proof of existence of EQ
Verify commutation of all constructions with the projections

THEOREM (P, F. RADOUX, R. WOLAK, 09)
There exist adapted and foliated natural and projectively
invariant quantizations that commute with the projection.
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RIEMANNIAN ORBIFOLDS

New ideas:
Use foliated manifolds as desingularization of arbitrary
orbifolds
Use the foliated EQ to construct a singular EQ on orbifolds

Fixed points of a symmetry action generate singularities:
Ui : open ball around O in R2

Γi = {id, γi , γ
2
i }: finite group of isometries

γi : rotation by angle 2π/3 around O – fixed point O
Vi = Ui/Γi : cone – prototype of an orbifold

DEFINITION

An n-dimensional Riemannian orbifold V is a topological space
with a cover Vi and charts (Ui , Γi ,qi), qi : Ui/Γi

∼→ Vi , (see
figure) s. th. the chart changes ϕji : Wi →Wj , qjϕji = qi , are
isometries.
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ORBIFOLD GEOMETRIC OBJECTS

No universal definitions of geometric objects on orbifolds
exist
Definitions of orbifold smooth maps, DO, symbols, vector
fields, connections, differential forms, local isomorphisms...
are needed
Definitions must capture the nature of an orbifold
Definitions must guarantee a 1-to-1 correspondence
between orbifold and foliated geometric objects on the
desingularization
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DESINGULARIZATION OF AN ORBIFOLD

Objective I:

For any Riemannian orbifold V construct a foliated smooth
manifold (Ṽ ,F) s.th. Ṽ/F ' V

Step 1:

(Ui , Γi ,qi): orbifold chart, Γi : finite group of isometries
Ũi(Ui , πi ,O(n)): PB of orthonormal frames
γi : acts on Ui , γi∗: acts on Ũi

Ũi/Γi = Ṽi : smooth manifold – action properly discontinuous (Γi
finite) and free (figure)
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RESOLUTION OF AN ORBIFOLD

Step 2:

ϕji : chart-change isometries between Uis verify γijkϕki = ϕkjϕji

[ϕji∗]: induced maps between Ṽis verify [ϕki∗] = [ϕkj∗][ϕji∗]

Ṽ : glued from Ṽis is a smooth manifold
O(n): right action on Ũis, Ṽis, Ṽ
F : regular foliation on Ṽ
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EQUIVARIANT QUANTIZATION OF ORBIFOLDS

V : Riemannian orbifold, (Ṽ ,F): foliated smooth resolution

Q(F): foliated EQ of (Ṽ ,F)

QV [∇](S) := p∗−1
D (Q(F)[p∗C∇](p∗SS))

THEOREM (P, F. RADOUX, R. WOLAK, 10)
There exists a natural and projectively invariant quantization of
orbifolds.
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OUTLOOK

Equivariant quantization of supermanifolds
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Thank you!
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