EQUIVARIANT QUANTIZATION OF ORBIFOLDS

Norbert Poncin

Mathematics Research Unit University of Luxembourg

Current Geometry, Levi-Civita Institute, Vietri, 2010

Norbert Poncin Equivariant quantization of orbifolds

Equivariant quantization of

- vector spaces
- smooth manifolds
- foliated manifolds
- orbifolds
- supermanifolds

People:

A. Cap, M. Bordemann, C. Duval, H. Gargoubi, J. George, P. Lecomte, P. Mathonet, J.-P. Michel, V. Ovsienko, F. Radoux, J. Silhan, R. Wolak, ..., P

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

GEOMETRIC CHARACTERIZATION OF QUANTIZATION

 $D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\operatorname{loc}} \stackrel{\operatorname{loc}}{\simeq} \operatorname{Hom}_{\mathbb{R}}(\mathcal{C}^{\infty}(\mathcal{U}, \bar{E}), \mathcal{C}^{\infty}(\mathcal{U}, \bar{F}))_{\operatorname{loc}}$

$$f \in C^{\infty}(U), \boldsymbol{e} \in \bar{\boldsymbol{E}}, \boldsymbol{x} \in \boldsymbol{U}, \boldsymbol{\xi} \in (\mathbb{R}^m)^*$$
$$D(f\boldsymbol{e}) = \sum_{\alpha} D_{\alpha, \boldsymbol{x}}(\boldsymbol{e}) \partial_{\boldsymbol{x}^1}^{\alpha^1} \dots \partial_{\boldsymbol{x}^m}^{\alpha^m} f$$
$$\simeq \sum_{\alpha} D_{\alpha, \boldsymbol{x}} (\boldsymbol{e}) \xi_1^{\alpha^1} \dots \xi_m^{\alpha^m}$$
$$= \sigma_{\mathrm{aff}}(D)(\boldsymbol{\xi}; \boldsymbol{e})$$

Differential operator $\stackrel{\text{loc}}{\simeq}$ polynomial, total affine symbol $D \in \text{Hom}_{\mathbb{R}}(\Gamma(\mathcal{E}), \Gamma(\mathcal{F}))_{\text{loc}} \stackrel{\text{loc}}{\simeq}$

Norbert Poncin Equivariant quantization of orbifolds

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

 $D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\operatorname{loc}} \stackrel{\operatorname{loc}}{\simeq} \operatorname{Hom}_{\mathbb{R}}(\mathcal{C}^{\infty}(\mathcal{U}, \bar{E}), \mathcal{C}^{\infty}(\mathcal{U}, \bar{F}))_{\operatorname{loc}}$

$$f \in C^{\infty}(U), \boldsymbol{e} \in \bar{\boldsymbol{E}}, \boldsymbol{x} \in \boldsymbol{U}, \boldsymbol{\xi} \in (\mathbb{R}^m)^*$$
$$D(f\boldsymbol{e}) = \sum_{\alpha} D_{\alpha, \boldsymbol{x}}(\boldsymbol{e}) \partial_{\boldsymbol{x}^1}^{\alpha^1} \dots \partial_{\boldsymbol{x}^m}^{\alpha^m} f$$
$$\simeq \sum_{\alpha} D_{\alpha, \boldsymbol{x}}(\boldsymbol{e}) \xi_1^{\alpha^1} \dots \xi_m^{\alpha^m}$$
$$= \sigma_{\mathrm{aff}}(D)(\boldsymbol{\xi}; \boldsymbol{e})$$

Differential operator $\stackrel{\text{loc}}{\simeq}$ polynomial, total affine symbol $D \in \text{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text{loc}} \stackrel{\text{loc}}{\simeq} \sigma_{\text{aff}}(D) \in \Gamma(\mathcal{STU} \otimes E^* \otimes F)$

Norbert Poncin Equivariant quantization of orbifolds

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\operatorname{loc}} \stackrel{\operatorname{loc}}{\simeq} \operatorname{Hom}_{\mathbb{R}}(\mathcal{C}^{\infty}(\mathcal{U}, \bar{E}), \mathcal{C}^{\infty}(\mathcal{U}, \bar{F}))_{\operatorname{loc}}$

$$f \in C^{\infty}(U), \boldsymbol{e} \in \bar{\boldsymbol{E}}, \boldsymbol{x} \in \boldsymbol{U}, \boldsymbol{\xi} \in (\mathbb{R}^m)^*$$
$$D(f\boldsymbol{e}) = \sum_{\alpha} D_{\alpha, \boldsymbol{x}}(\boldsymbol{e}) \partial_{\boldsymbol{x}^1}^{\alpha^1} \dots \partial_{\boldsymbol{x}^m}^{\alpha^m} f$$
$$\simeq \sum_{\alpha} D_{\alpha, \boldsymbol{x}}(\boldsymbol{e}) \boldsymbol{\xi}_1^{\alpha^1} \dots \boldsymbol{\xi}_m^{\alpha^m}$$
$$= \sigma_{\mathrm{aff}}(D)(\boldsymbol{\xi}; \boldsymbol{e})$$

Differential operator $\stackrel{\text{loc}}{\simeq}$ polynomial, total affine symbol $D \in \text{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text{loc}} \stackrel{\text{loc}}{\simeq} \sigma_{\text{aff}}(D) \in \Gamma(\mathcal{STU} \otimes E^* \otimes F)$

Norbert Poncin Equivariant quantization of orbifolds

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Symbol calculus

Example:

Intertwining condition:

 $\left(L_X(TD)-T(L_XD)\right)(\omega)=0$

Symbolic representation:

$$\begin{aligned} & (X.T)(\eta; D)(\boldsymbol{\xi}; \omega) - \langle X, \eta \rangle \left((\tau_{\zeta} T)(\eta; D) \right) (\boldsymbol{\xi}; \omega) \\ & - \langle X, \boldsymbol{\xi} \rangle \left(\tau_{\zeta} (T(\eta; D)) \right) (\boldsymbol{\xi}; \omega) + T(\eta + \zeta; X\tau_{\zeta} D)(\boldsymbol{\xi}; \omega) \\ & - T(\eta; D)(\boldsymbol{\xi} + \zeta; \boldsymbol{\zeta} \wedge i_{X} \omega) + T(\eta + \zeta; D(\cdot + \zeta; \boldsymbol{\zeta} \wedge i_{X} \cdot))(\boldsymbol{\xi}; \omega) = \mathbf{0} \end{aligned}$$

Applications:

Flato-Lichnerowicz, De Wilde-Lecomte: cohomology of vector fields valued in differential forms

P: cohomology of the Nijenhuis-Richardson graded Lie algebra, nonexistence of universal classes

 $M = \mathbb{R}^m$, $D \in \mathcal{D}(M)$, ϕ : coordinate change

Norbert Poncin Equivariant quantization of orbifolds

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $M = \mathbb{R}^m$, $D \in \mathcal{D}(M)$, ϕ : coordinate change

$$D(f) = \sum_{\alpha} D_{\alpha, x} \partial_{x}^{\alpha} f \quad \stackrel{\sigma_{\text{aff}}}{\longleftrightarrow} \quad \sigma_{\text{aff}}(D)(\xi) = \sum_{\alpha} D_{\alpha, x} \xi^{\alpha}$$

$$\uparrow \phi \qquad \qquad \uparrow \phi$$

$$\cdots \qquad \stackrel{\sigma_{\text{aff}}}{\longleftrightarrow} \qquad \cdots$$

Non commutative, $\sigma_{\text{aff}}(D)$ not intrinsic, $\sigma(D)$ geometric meaning

 $M = \mathbb{R}^m$, $D \in \mathcal{D}(M)$, ϕ : coordinate change

$$D(f) = \sum_{\alpha} D_{\alpha, x} \partial_{x}^{\alpha} f \quad \stackrel{\sigma_{\text{aff}}}{\leftrightarrow} \quad \sigma_{\text{aff}}(D)(\xi) = \sum_{\alpha} D_{\alpha, x} \xi^{\alpha}$$

$$\uparrow \phi \qquad \qquad \uparrow \phi$$

$$\cdots \qquad \stackrel{\sigma_{\text{aff}}}{\cdots} \qquad \cdots$$

Non commutative, $\sigma_{aff}(D)$ not intrinsic, $\sigma(D)$ geometric meaning

Vector space isomorphism:

 $\sigma_{\mathrm{aff}}^{-1}$: Pol $(T^*M) = \Gamma(STM) =: S(M) \to \mathcal{D}(M)$

Nonequivariance (global version):

$$\exists \phi \in \operatorname{Diff}(\boldsymbol{M}) : \sigma_{\operatorname{aff}}^{-1} \circ \phi \neq \phi \circ \sigma_{\operatorname{aff}}^{-1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$Q = \sigma_{\text{tot}}^{-1} : S \qquad (M) = \Gamma(STM) \qquad) \stackrel{\text{vs-isom}}{\to} \mathcal{D} \quad (M),$$

such that

$$\sigma_{\text{tot}}^{-1} \circ L_X = \mathcal{L}_X \circ \sigma_{\text{tot}}^{-1}, \forall X \in \mathcal{X}(M)$$

and

$$\sigma \circ \sigma_{\text{tot}}^{-1} \mid_{\mathcal{S}^{k}(M)} = \text{id}_{\mathcal{S}^{k}(M)}$$
 (normalization)

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$Q = \sigma_{\text{tot}}^{-1} : \mathcal{S}_{\delta = \mu - \lambda}(M) = \Gamma(\mathcal{S}TM \otimes \Delta^{\delta}TM) \stackrel{\text{vs-isom}}{\to} \mathcal{D}_{\lambda\mu}(M),$$

such that

$$\sigma_{\text{tot}}^{-1} \circ L_X = \mathcal{L}_X \circ \sigma_{\text{tot}}^{-1}, \forall X \in \mathcal{X}(M)$$

and

$$\sigma \circ \sigma_{\text{tot}}^{-1} \mid_{\mathcal{S}^{k}_{\delta}(M)} = \text{id}_{\mathcal{S}^{k}_{\delta}(M)} \quad \text{(normalization)}$$

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$Q = \sigma_{\text{tot}}^{-1} : S_{\delta = \mu - \lambda}(M) = \Gamma(STM \otimes \Delta^{\delta}TM) \stackrel{\text{vs-isom}}{\to} \mathcal{D}_{\lambda \mu}(M),$$

such that

$$\sigma_{\text{tot}}^{-1} \circ L_X = \mathcal{L}_X \circ \sigma_{\text{tot}}^{-1}, \forall X \in \mathcal{X}(M)$$

and

$$\sigma \circ \sigma_{\text{tot}}^{-1} \mid_{\mathcal{S}^{k}_{\delta}(M)} = \text{id}_{\mathcal{S}^{k}_{\delta}(M)}$$
 (normalization)

P. Lecomte, P. Mathonet, E. Tousset, 96: $\mathcal{D}_{\lambda\lambda}(M)$ and $\mathcal{D}_{\mu\mu}(M)$ not isomorphic as $\mathcal{X}(M)$ -modules

Nonequivariance (local version):

$$\exists X \in \mathcal{X}(M) : \sigma_{\mathrm{aff}}^{-1} \circ L_X \neq \mathcal{L}_X \circ \sigma_{\mathrm{aff}}^{-1}$$

Definition of an g-equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$Q = \sigma_{\text{tot}}^{-1} : \mathcal{S}_{\delta = \mu - \lambda}(M) = \Gamma(\mathcal{S}TM \otimes \Delta^{\delta}TM) \stackrel{\text{vs-isom}}{\to} \mathcal{D}_{\lambda \mu}(M),$$

such that

$$\sigma_{\text{tot}}^{-1} \circ L_X = \mathcal{L}_X \circ \sigma_{\text{tot}}^{-1}, \forall X \in \mathfrak{g} \subset \mathcal{X}(M)$$

and

$$\sigma \circ \sigma_{\text{tot}}^{-1} |_{\mathcal{S}^{k}_{\delta}(M)} = \text{id}_{\mathcal{S}^{k}_{\delta}(M)} \quad \text{(normalization)}$$

P. Lecomte, P. Mathonet, E. Tousset, 96: $\mathcal{D}_{\lambda\lambda}(M)$ and $\mathcal{D}_{\mu\mu}(M)$ not isomorphic as $\mathcal{X}(M)$ -modules

Some motivations:

• Invariant star-products on T^*M obtained as pullbacks by

$$Q_{\hbar}(P) = \hbar^k Q(P), P \in \operatorname{Pol}^k(T^*M)$$

of the associative structure of the space of differential operators

- Classification of spaces of differential operators as modules over Lie algebras of vector fields
- Role of symmetries in relationship between classical and quantum systems complete geometric characterization of quantization: a flat fixed *G*-structure on configuration space guarantees existence and uniqueness of a global g-equivariant quantization (where Lie(G) = g)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Maximal Lie subalgebras $\mathfrak{g} \subset \mathcal{X}(M)$, $M = \mathbb{R}^m$:

Projective case: $G = PGL(m + 1, \mathbb{R})$, $g = sl(m + 1, \mathbb{R})$ can be embedded as maximal Lie subalgebra sl_{n+1} into $\mathcal{X}_*(M)$ (Lecomte, Ovsienko, 99)

Conformal case: G = SO(p + 1, q + 1) (p + q = m), g = o(p + 1, q + 1) can be embedded as maximal Lie subalgebra $o_{p+1,q+1}$ into $\mathcal{X}_*(M)$ (Duval, Lecomte, Ovsienko, 99)

Other cases: ... (Boniver, Mathonet, 01)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

THE CASIMIR TECHNIQUE

- Projectively equivariant quantization for differential operators on differential forms [Boniver, Hansoul, Mathonet, P, 02]
- Efficiency of equivariant and standard affine symbol calculus as classification tools for modules of differential operators [P,04]
- Automorphisms and derivations of classical and quantum Poisson algebras [Grabowski, P, 04], [Grabowski, P, 05]

Difference with automorphisms of the classical and the quantum Weyl algebra [Kanel, Kontsevich, 05]

$$Q: (\mathcal{S}_{kp}, L_X) \rightarrow (\mathcal{D}_p^k \simeq \mathcal{S}_{kp}, \mathcal{L}_X)$$
: potential sl_{m+1}-EQ

Main observation:

$$Q \circ C = C \circ Q$$
$$CP = \alpha P \Rightarrow CQP = \alpha QP$$

Ideas:

• Diagonalization of C: $S_p^k = A_p^k \oplus B_p^k$, eigenvalues α_p^k , β_p^k

•
$$\mathcal{C} - \mathcal{C} = \mathbb{N}$$
 $\underbrace{(\mathcal{L}_X - \mathcal{L}_X)}_{\mathcal{S}_p^k \to \mathcal{S}_p^{k-1}} = \frac{1}{m+1} (\delta \operatorname{Div} \delta^* + \delta^* \operatorname{Div} \delta)$

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

 $N : \mathcal{A}_p^k \ni P \to NP \in \mathcal{A}_p^{k-1}$. Set $QP = P + Q_1P$ and try to define $Q_1 : \mathcal{A}_p^k \to \mathcal{A}_p^{k-1}$.

Since

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

 $N : \mathcal{A}_p^k \ni P \to NP \in \mathcal{A}_p^{k-1}$. Set $QP = P + Q_1P$ and try to define $Q_1 : \mathcal{A}_p^k \to \mathcal{A}_p^{k-1}$.

Since

$$\alpha_p^k P + \overbrace{\alpha_p^k Q_1 P}^{\in \mathcal{A}_p^{k-1}} = QCP = CQP = C(P + Q_1 P) = \underbrace{\epsilon \mathcal{A}_p^{k-1}}_{(C+N)(P+Q_1 P)} = \alpha_p^k P + \overbrace{\alpha_p^{k-1} Q_1 P}^{\in \mathcal{A}_p^{k-1}} + \overbrace{NQ_1 P}^{\in \mathcal{A}_p^{k-2}},$$

• we get
$$Q_1 P = \frac{1}{\alpha_p^k - \alpha_p^{k-1}} \frac{1}{m+1} (\delta \operatorname{Div} \delta^* P)$$

• and have to set $QP = P + \sum_{\ell=1}^k Q_\ell P, Q_\ell : \mathcal{A}_p^k \to \mathcal{A}_p^{k-1}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

 $N : \mathcal{A}_p^k \ni P \to NP \in \mathcal{A}_p^{k-1}$. Set $QP = P + Q_1P$ and try to define $Q_1 : \mathcal{A}_p^k \to \mathcal{A}_p^{k-1}$.

Since

$$\alpha_{p}^{k}P + \alpha_{p}^{k}Q_{1}P = QCP = CQP = C(P + Q_{1}P) = \underbrace{\in \mathcal{A}_{p}^{k-1}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NP + NQ_{1}P,} \underbrace{\in \mathcal{A}_{p}^{k-2}}_{(C+N)(P+Q_{1}P) = \alpha_{p}^{k}P + \alpha_{p}^{k-1}Q_{1}P + NP + NP + NP + \alpha_{p}^{k-1}Q_{1}P + \alpha_{p}^{k-1}Q_$$

EQUIVARIANT QUANTIZATION OF SMOOTH MANIFOLDS

Projective structure on a manifold M

Projective structure \rightsquigarrow straight lines \rightsquigarrow geodesics \rightsquigarrow no canonical connection \rightsquigarrow class of connections associated with the same geodesics

Torsion-free linear connections ∇ , ∇' on *M* are projectively equivalent, i.e. define the same geometric geodesics, if and only if (H. Weyl)

$$abla'_X Y -
abla_X Y = \omega(X) Y + \omega(Y) X \in \mathcal{X}(M),$$

where $X, Y \in \mathcal{X}(M), \omega \in \Omega^1(M)$

Projective structure on $M = \text{class} [\nabla]$ of projectively equivalent connections

Quantization associated with a connection (A. Lichnerowicz, star-products)

 $D \in \mathcal{D}^{k}(\Gamma(E), \Gamma(F)) \leftrightarrow P \in \Gamma(\mathcal{S}^{k} TM \otimes E^{*} \otimes F)$

 ∇ : covariant derivative of *E* $\nabla^k : \Gamma(E) \ni f \to \nabla^k f \in \Gamma(\mathcal{S}^k T^* M \otimes E)$: iterated symmetrized

 $Q_{\rm aff}(\nabla)P: \Gamma(E) \ni f \to (Q_{\rm aff}(\nabla)P) f = i_P(\nabla^k f) \in \Gamma(F)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Towards natural and projectively invariant quantization

• There is no $Q: \mathcal{S} \to \mathcal{D}$ such that

 $\boldsymbol{Q} \circ \boldsymbol{\phi}^* = \boldsymbol{\phi}^* \circ \boldsymbol{Q}, \forall \boldsymbol{\phi} \in \operatorname{Diff}(\boldsymbol{M})$

i.e.

 $(Q(\phi^*P))(\phi^*f) = \phi^*((QP)(f)), \forall \phi \in \operatorname{Diff}(M)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Towards natural and projectively invariant quantization

• There is no ${\pmb{Q}}: \mathcal{S} \to \mathcal{D}$ such that

$$\boldsymbol{Q} \circ \boldsymbol{\phi}^* = \boldsymbol{\phi}^* \circ \boldsymbol{Q}, \forall \boldsymbol{\phi} \in \operatorname{Diff}(\boldsymbol{M})$$

i.e.

$$(Q(\phi^*P))(\phi^*f) = \phi^*((QP)(f)), \forall \phi \in \operatorname{Diff}(M)$$

• Is there $Q(\nabla) : S \to D$ such that

 $\left(Q(\phi^*\nabla)(\phi^*P)\right)(\phi^*f)=\phi^*\left((Q(\nabla)P)(f)\right),$

for all local diffeomorphisms ϕ ?

Remarks

- Example of the gauge principle
- Q problem: no solution
 Q(∇) problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Remarks

- Example of the gauge principle
- *Q* problem: no solution
 Q(∇) problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)
- Group PGL(m + 1, ℝ) does not preserve ∇, but the flows of X ∈ sl_{m+1} ⊂ X_{*}(ℝ^m) preserve [∇]: the solution Q = σ⁻¹_{sl_{m+1}} of Lecomte and Ovsienko is intelligible,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

Remarks

- Example of the gauge principle
- Q problem: no solution
 Q(∇) problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)
- Group PGL(m + 1, ℝ) does not preserve ∇, but the flows of X ∈ sl_{m+1} ⊂ X_{*}(ℝ^m) preserve [∇]: the solution Q = σ⁻¹_{sl_{m+1}} of Lecomte and Ovsienko is intelligible, if Q = Q[∇]
- Additional requirement (uniqueness): Q = Q[∇], i.e. Q is projectively invariant

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

PROJECTIVELY EQ OF ARBITRARY MANIFOLDS

Definition (Lecomte 01):

A natural and projectively invariant quantization is a family

 $Q_M : \mathcal{C}(M) \times \mathcal{S}_{\delta}(M) \to \mathcal{D}_{\lambda\mu}(M),$

indexed by smooth manifolds M, s.th., for any $\nabla \in \mathcal{C}(M)$,

 $Q_M[\nabla] : \mathcal{S}_{\delta}(M) \to \mathcal{D}_{\lambda\mu}(M)$

is a vector space isomorphism that verifies

• the usual normalization condition

2 for any local diffeomorphism ϕ of M,

 $(Q_{\mathcal{M}}[\phi^*\nabla](\phi^*P))(\phi^*f) = \phi^*((Q_{\mathcal{M}}[\nabla]P)(f)),$

 $\forall \boldsymbol{P} \in \mathcal{S}_{\delta}(\boldsymbol{M}), \forall f \in \Gamma(\Delta^{\lambda} T \boldsymbol{M})$

• $Q_M[\nabla]$ is independent of $\nabla \in [\nabla]$

・ロマ・山 マ・山 マ・山 マ・山 マ

Remarks:

- Generalization: If Q is a natural and projectively invariant quantization, then $Q_{\mathbb{R}^m}[\nabla_0]$ (∇_0 : canonical flat connection) is an $\mathrm{sl}(m+1,\mathbb{R})$ -equivariant quantization
- Functorial formulation: M. Bordemann wrote this definition in the language of natural bundles and operators (see I. Kolář, P. W. Michor, J. Slovăk)
- Existence results: M. Bordemann, 02; P. Mathonet, F. Radoux, 05; S. Hansoul, 06; A. Cap, J. Silhan, 09
- Techniques: Thomas-Whitehead connections, Cartan connections, tractor calculus

THE THOMAS-WHITEHEAD TECHNIQUE

Example $M := S^m$

 $g \in G := \operatorname{GL}(m+1, \mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}^+_0

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●
$g \in G := \operatorname{GL}(m+1, \mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}_0^+ Lift the complex situation on *M* to the simpler situation on \tilde{M} :

$Q[\nabla](P)(f)$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 $g \in G := \operatorname{GL}(m+1, \mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}_0^+ Lift the complex situation on *M* to the simpler situation on \tilde{M} :

• Construct natural lifts $\nabla \to \tilde{\nabla}$, $P \to \tilde{P}$, and $f \to \tilde{f}$

$$Q[\nabla](P)(f)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $g \in G := \operatorname{GL}(m+1, \mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}_0^+ Lift the complex situation on *M* to the simpler situation on \tilde{M} :

• Construct natural lifts $\nabla \to \tilde{\nabla}$, $P \to \tilde{P}$, and $f \to \tilde{f}$

$$Q[\nabla](P)(f) \qquad Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 $g \in G := \operatorname{GL}(m+1,\mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}_0^+ Lift the complex situation on *M* to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \to \tilde{\nabla}$, $P \to \tilde{P}$, and $f \to \tilde{f}$
- Define a quantization $Q[\nabla]$ by

$$(Q[\nabla](P)(f))^{\tilde{}} := Q_{\text{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

 $g \in G := \operatorname{GL}(m+1,\mathbb{R})$

All *g* preserve the canonical connection of \mathbb{R}^{m+1} , the induced ϕ_g do usually not preserve the canonical LC-connection on S^m $\tilde{M} := \mathbb{R}^{m+1} \setminus \{0\} \to S^m =: M$ is a bundle with typical fiber \mathbb{R}_0^+ Lift the complex situation on *M* to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \to \tilde{\nabla}$, $P \to \tilde{P}$, and $f \to \tilde{f}$
- Define a quantization $Q[\nabla]$ by

$$(Q[\nabla](P)(f))^{\tilde{}} := Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$

• Check if $\tilde{\nabla}$ only depends upon $[\nabla]$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

The point is:

Norbert Poncin Equivariant quantization of orbifolds

The point is:

Standard affine quantization

$$Q_{\mathrm{aff}}(
abla)(P)(f) = i_P(
abla^{\cdot}f)$$

is natural, but not projectively invariant

The point is:

Standard affine quantization

$$Q_{\rm aff}(\nabla)(P)(f)=i_P(\nabla^{\cdot}f)$$

is natural, but not projectively invariant

• Naturality of all lifts and naturality of *Q*_{aff} entails naturality of *Q*:

$$(Q[\nabla](P)(f))^{\tilde{}} = Q_{aff}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$
$$(Q[\phi_g^*\nabla](\phi_g^*P)(\phi_g^*f))^{\tilde{}} = Q_{aff}(g^*\tilde{\nabla})(g^*\tilde{P})(g^*\tilde{f})$$
$$= g^*Q_{aff}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$
$$= g^*(Q[\nabla](P)(f))^{\tilde{}}$$
$$= (\phi_g^*Q[\nabla](P)(f))^{\tilde{}}$$

The point is:

Standard affine quantization

$$Q_{\rm aff}(\nabla)(P)(f)=i_P(\nabla^{\cdot}f)$$

is natural, but not projectively invariant

• Naturality of all lifts and naturality of *Q*_{aff} entails naturality of *Q*:

$$(Q[\nabla](P)(f))^{\tilde{}} = Q_{aff}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$

$$(Q[\phi_g^*\nabla](\phi_g^*P)(\phi_g^*f))^{\tilde{}} = Q_{aff}(g^*\tilde{\nabla})(g^*\tilde{P})(g^*\tilde{f})$$

$$= g^*Q_{aff}(\tilde{\nabla})(\tilde{P})(\tilde{f})$$

$$= g^*(Q[\nabla](P)(f))^{\tilde{}}$$

$$= (\phi_g^*Q[\nabla](P)(f))^{\tilde{}}$$

• Projective invariance of $\tilde{\nabla}$ entails projective invariance of Q

•
$$\Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}$$
,
 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R} \quad \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}$:
rank 1 bundle of 1 – densities over M

•
$$\Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}_0^+,$$

 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R}_0^+ \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}_0^+:$

rank 1 affine bundle of positive 1 – densities over M

•
$$\tilde{M} := \Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}_0^+,$$

 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R}_0^+ \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}_0^+:$

rank 1 affine bundle of positive 1 – densities over M

GENERAL CASE

Extension of the S^m -construction to an arbitrary M, dim M = m

•
$$\widetilde{M} := \Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}_0^+,$$

 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R}_0^+ \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}_0^+:$

rank 1 affine bundle of positive 1 – densities over M

•
$$\tilde{M} \times \mathbb{R}^+_0 \ni ([u, r], s) \to \rho_s[u, r] = [u, rs] \in \tilde{M}$$
: $\mathbb{R}^+_0 - \mathsf{pb}$

•
$$\tilde{M} := \Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}_0^+$$
,
 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R}_0^+ \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}_0^+$:
rank 1 affine bundle of positive 1 – densities over M

•
$$\tilde{M} \times \mathbb{R}^+_0 \ni ([u, r], s) \to \rho_s[u, r] = [u, rs] \in \tilde{M}$$
: $\mathbb{R}^+_0 - \mathsf{pb}$

 $\Delta^{\lambda} TM = \tilde{M} \times_{\mathbb{R}_{0}^{+}} \mathbb{R},$ $\mathbb{R}_{0}^{+} \times \mathbb{R} \ni (s, t) \to s.t = s^{\lambda}t:$

line bundle of λ -densities over M

•
$$\tilde{M} := \Delta^1 TM = P^1 M \times_{\operatorname{GL}(m,\mathbb{R})} \mathbb{R}_0^+$$
,
 $\operatorname{GL}(m,\mathbb{R}) \times \mathbb{R}_0^+ \ni (g,r) \to g \cdot r = |\det g|^{-1} r \in \mathbb{R}_0^+$:
rank 1 affine bundle of positive 1 – densities over M

•
$$\tilde{M} \times \mathbb{R}^+_0 \ni ([u, r], s) \to \rho_s[u, r] = [u, rs] \in \tilde{M}$$
: $\mathbb{R}^+_0 - \mathsf{pb}$

 $\Delta^{\lambda} TM = \widetilde{M} \times_{\mathbb{R}^{+}_{0}} \mathbb{R},$ $\mathbb{R}^{+}_{0} \times \mathbb{R} \ni (s, t) \to s.t = s^{\lambda}t:$

line bundle of λ -densities over M

$$f \in \Gamma(\Delta^{\lambda} TM) \leftrightarrow \tilde{f} \in C^{\infty}(\tilde{M})_{\mathbb{R}^+_0}$$

• Lifts \tilde{P} and $\tilde{\nabla}$ are technical

Essential remark: Natural and projectively invariant lift $\tilde{\nabla}$ is a connection of some known type

• Lifts \tilde{P} and $\tilde{\nabla}$ are technical

Essential remark: Natural and projectively invariant lift $\tilde{\nabla}$ is a connection of some known type

Study of projective equivalence of connections

- Origins: Goes back to the twenties and thirties
- Objective: Associate a unique connection to each projective structure [∇]
- First answer: Thomas-Whitehead projective connection (T.Y. Thomas, J.H.C. Whitehead, O. Veblen)
- Second answer: Cartan projective connection (E. Cartan)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

THOMAS-WHITEHEAD CONNECTIONS

•
$$\tilde{\nabla}\mathcal{E} = \frac{1}{m+1}$$
 id
• $\rho_{s*}\left(\tilde{\nabla}_X Y\right) = \tilde{\nabla}_{\rho_{s*}X}\rho_{s*}Y, \quad \forall X, Y \in \mathcal{X}(\tilde{M})$

- *Bordemann's connection* is a Thomas-Whitehead connection
- S. Hansoul *extended* the work of M. Bordemann from tensor densities to sections of arbitrary vector bundles associated with the principle bundle of linear frames

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

THE CARTAN TECHNIQUE

*P*²*M* = { j₀²(ψ) | ψ : 0 ∈ U ⊂ ℝ^m → M, det ψ_{*0} ≠ 0 }:
 2nd order frame bundle

 $\mathcal{G}_m^2 = \{ j_0^2(f) \mid f : 0 \in U \subset \mathbb{R}^m \to \mathbb{R}^m, f(0) = 0, \det f_{*0} \neq 0 \}:$ structure group

•
$$G = PGL(m + 1, \mathbb{R})$$
 acts on $\mathbb{R}P^m$
 $H = G_{[e_{m+1}]} =$
 $\left\{ \begin{pmatrix} A & 0 \\ \alpha & a \end{pmatrix} : A \in GL(m, \mathbb{R}), \alpha \in \mathbb{R}^{m*}, a \neq 0 \right\} / \mathbb{R}_0$ id

acts locally on \mathbb{R}^m by $\mathbb{R}^m \supset U \ni Z \mapsto \frac{AZ}{\alpha Z + a} \in \mathbb{R}^m$: $H \subset \mathcal{G}_m^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = ∽○へ⊙

• Proposition:

Reductions P(M, H) of P^2M to $H \subset \mathcal{G}_m^2$ are 1-to-1 with *projective structures* $[\nabla]$

Theorem:

To every projective structure $[\nabla] \simeq P(M, H)$ is associated a *unique normal Cartan connection* ω

- Definition:
 - G: Lie group, H: closed subgroup, $\mathfrak{g},\mathfrak{h}$: Lie algebras

P = P(M, H): PB s.th. dim $M = \dim G/H$

- A Cartan connection on P is a 1-form $\omega \in \Omega^1(P) \otimes \mathfrak{g}$ s.th.
 - $\mathfrak{r}_s^*\omega = \operatorname{Ad}(s^{-1})\omega$ (\mathfrak{r}_s right action of $s \in H$)
 - $\omega(X^h) = h$ $(h \in \mathfrak{h})$
 - ω_u: T_uP → g (u ∈ P) is a vector space isomorphism (no horizontal SB)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on P = P(M, H):

 $\mathcal{S}_{\delta}^{k}(M) = \Gamma(\mathcal{S}^{k} TM \otimes \Delta^{\delta} TM) = C^{\infty}(\mathcal{P}^{1}M, \mathcal{S}^{k}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$ $\Gamma(\Delta^{\lambda} TM) = C^{\infty}(\mathcal{P}^{1}M, \Delta^{\lambda}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$

 (V, ρ) : representation of $GL(m, \mathbb{R})$ $C^{\infty}(P^{1}M, V)_{GL(m, \mathbb{R})}$

Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on P = P(M, H):

 $\mathcal{S}_{\delta}^{k}(M) = \Gamma(\mathcal{S}^{k} TM \otimes \Delta^{\delta} TM) = C^{\infty}(\mathcal{P}^{1}M, \mathcal{S}^{k}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$ $\Gamma(\Delta^{\lambda} TM) = C^{\infty}(\mathcal{P}^{1}M, \Delta^{\lambda}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$

 (V, ρ) : representation of $GL(m, \mathbb{R})$ $C^{\infty}(P^{1}M, V)_{GL(m, \mathbb{R})}$

Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on P = P(M, H):

 $\mathcal{S}_{\delta}^{k}(M) = \Gamma(\mathcal{S}^{k} TM \otimes \Delta^{\delta} TM) = C^{\infty}(\mathcal{P}^{1}M, \mathcal{S}^{k}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$ $\Gamma(\Delta^{\lambda} TM) = C^{\infty}(\mathcal{P}^{1}M, \Delta^{\lambda}\mathbb{R}^{m})_{\mathrm{GL}(m,\mathbb{R})}$

 (V, ρ) : representation of $GL(m, \mathbb{R})$ $C^{\infty}(P^1M, V)_{GL(m, \mathbb{R})} \simeq C^{\infty}(P, V)_H$

Idea:

$$(\mathbf{Q}_{\mathcal{M}}[\nabla](\mathcal{S})(f))^{\tilde{}} = \mathbf{Q}_{\mathrm{aff}}(\omega)(\tilde{\mathcal{S}})(\tilde{f}) = i_{\tilde{\mathcal{S}}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Idea:

$$(\mathbf{Q}_{\mathcal{M}}[\nabla](S)(f)) = \mathbf{Q}_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

• Derivative associated with ω :

 $abla^\omega: {\pmb{C}}^\infty({\pmb{P}},{\pmb{V}}) o {\pmb{C}}^\infty({\pmb{P}},{\mathbb{R}}^{{\pmb{m}}*}\otimes {\pmb{V}})$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f)) = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

• Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) =$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f)) = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

► Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \rightarrow C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) = (L g)(u) \in V$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f))^{\tilde{}} = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

► Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \rightarrow C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) = (L_{\mathcal{X}(P) \ni X(\omega, v)} g)(u) \in V$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f))^{\tilde{}} = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

► Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) = (L_{\chi(P) \ni \chi(\omega, v)} g)(u) \in V$ $\omega_{u} \in \operatorname{Isom}(T_{u}P, \mathfrak{g}), \mathfrak{g} = \operatorname{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \operatorname{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m*} \ni v$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f))^{\tilde{}} = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

► Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) = (L_{\chi(P) \ni \chi(\omega, v) = \omega^{-1}v}g)(u) \in V$ $\omega_{u} \in \operatorname{Isom}(T_{u}P, \mathfrak{g}), \mathfrak{g} = \operatorname{sl}(m + 1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \operatorname{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m*} \ni v$

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f))^{\tilde{}} = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

► Derivative associated with ω : $\nabla^{\omega} : C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$ $(\nabla^{\omega}g)(u)(v) = (L_{\mathcal{X}(P) \ni X(\omega, v) = \omega^{-1}v}g)(u) \in V$ $\omega_{u} \in \operatorname{Isom}(\operatorname{T_{u}P}, \mathfrak{g}), \mathfrak{g} = \operatorname{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \operatorname{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m*} \ni v$ $(\nabla^{\omega})^{k} : C^{\infty}(P, V) \to C^{\infty}(P, \mathcal{S}^{k}\mathbb{R}^{m*} \otimes V)$: iterated symmetrized

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f)) = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

 \triangleright Derivative associated with ω : $\nabla^{\omega}: C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^m$ $(\nabla^{\omega}g)(u)(v) = \left(L_{\mathcal{X}(P) \ni \mathcal{X}(\omega, v) = \omega^{-1}v}g\right)(u) \in V$ $\omega_{u} \in \text{Isom}(T_{u}P, \mathfrak{g}), \mathfrak{g} = \text{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \text{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m*} \ni V$ $(\nabla^{\omega})^k : C^{\infty}(P, V) \to C^{\infty}(P, \mathcal{S}^k \mathbb{R}^{m*} \otimes V)$: iterated symmetrized Problem: $\widetilde{f} \in C^{\infty}(P, \Delta^{\lambda}\mathbb{R}^m)_{H}, (\nabla^{\omega})^k \widetilde{f} \in C^{\infty}(P, \mathcal{S}^k\mathbb{R}^{m*}\otimes\Delta^{\lambda}\mathbb{R}^m)$ $ilde{S} \in C^\infty(P, \mathcal{S}^k \mathbb{R}^m \otimes \Delta^{\delta = \mu - \lambda} \mathbb{R}^m)_H$ $i_{ ilde{S}}\left((
abla^{\omega})^k ilde{f}
ight)\in C^\infty(P,\Delta^\mu\mathbb{R}^m)$ ◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

Idea:

$$(Q_{\mathcal{M}}[\nabla](S)(f)) = Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f}) = i_{\tilde{S}}\left((\nabla^{\omega})^{k}\tilde{f}\right)$$

 \triangleright Derivative associated with ω : $\nabla^{\omega}: C^{\infty}(P, V) \to C^{\infty}(P, \mathbb{R}^{m*} \otimes V)$ $g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^m$ $(\nabla^{\omega}g)(u)(v) = \left(L_{\mathcal{X}(P) \ni \mathcal{X}(\omega, v) = \omega^{-1}v}g\right)(u) \in V$ $\omega_{u} \in \text{Isom}(T_{u}P, \mathfrak{g}), \mathfrak{g} = \text{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \text{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m*} \ni V$ $(\nabla^{\omega})^k : C^{\infty}(P, V) \to C^{\infty}(P, \mathcal{S}^k \mathbb{R}^{m*} \otimes V)$: iterated symmetrized Problem: $\widetilde{f} \in C^{\infty}(P, \Delta^{\lambda}\mathbb{R}^m)_{H}, (\nabla^{\omega})^k \widetilde{f} \in C^{\infty}(P, \mathcal{S}^k\mathbb{R}^{m*} \otimes \Delta^{\lambda}\mathbb{R}^m)$ $ilde{S} \in \mathcal{C}^{\infty}(\mathcal{P}, \mathcal{S}^k \mathbb{R}^m \otimes \Delta^{\delta = \mu - \lambda} \mathbb{R}^m)_H$ $i_{\widetilde{S}}\left((
abla^\omega)^k \widetilde{f}
ight) \in C^\infty(P, \Delta^\mu \mathbb{R}^m)$: not *H*-equivariant (문화)(문화)

Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)_H$

Norbert Poncin Equivariant quantization of orbifolds

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()
Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)_H$ Div^{ω} : $C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m) \to C^{\infty}(P, S^{k-1} \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)$

Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)_H$ $\operatorname{Div}^{\omega} : C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m) \to C^{\infty}(P, S^{k-1} \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)$ e_{ℓ} : canonical basis of \mathbb{R}^m , ε^{ℓ} : dual basis in \mathbb{R}^{m*} $\operatorname{div}\left(\sum_{\ell} X^{\ell} e_{\ell}\right) = \sum_{j} i_{\varepsilon^j} \partial_{x^j}\left(\sum_{\ell} X^{\ell} e_{\ell}\right)$

Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)_H$ $\operatorname{Div}^{\omega} : C^{\infty}(P, S^k \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m) \to C^{\infty}(P, S^{k-1} \mathbb{R}^m \otimes \Delta^{\delta} \mathbb{R}^m)$ e_{ℓ} : canonical basis of \mathbb{R}^m , ε^{ℓ} : dual basis in \mathbb{R}^{m*} $\operatorname{div} \left(\sum_{\ell} X^{\ell} e_{\ell}\right) = \sum_{j} i_{\varepsilon^j} \partial_{x^j} \left(\sum_{\ell} X^{\ell} e_{\ell}\right)$ $\operatorname{Div}^{\omega} \tilde{S} = \sum_{j} i_{\varepsilon^j} \nabla^{\omega}_{e_j} \tilde{S}$

Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}(P, S^{k}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m})_{H}$ $\operatorname{Div}^{\omega} : C^{\infty}(P, S^{k}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m}) \to C^{\infty}(P, S^{k-1}\mathbb{R}^{m} \otimes \Delta^{\delta}\mathbb{R}^{m})$ e_{ℓ} : canonical basis of $\mathbb{R}^{m}, \varepsilon^{\ell}$: dual basis in \mathbb{R}^{m*} $\operatorname{div} \left(\sum_{\ell} X^{\ell} e_{\ell}\right) = \sum_{j} i_{\varepsilon^{j}} \partial_{X^{j}} \left(\sum_{\ell} X^{\ell} e_{\ell}\right)$ $\operatorname{Div}^{\omega} \tilde{S} = \sum_{j} i_{\varepsilon^{j}} \nabla^{\omega}_{e_{j}} \tilde{S}$

► Theorem:

For non critical δ ,

$$(Q_{M}[\nabla](S)(f))^{\tilde{}} = \sum_{\ell=0}^{k} c_{k\ell} i_{(\mathrm{Div}^{\omega})^{\ell} \tilde{S}} \left((\nabla^{\omega})^{k-\ell} \tilde{f} \right)$$

defines a natural projectively invariant quantization, if the $c_{k\ell}$ have some precise values

イロン 不良 とくほう 不良 とうほう

QUANTIZATION OF SINGULAR SPACES

E. Noether's theorem: Symmetries \rightsquigarrow 1st integrals \rightsquigarrow reduction of (q_1, \ldots, p_n) .

Reduced phase space: N/G, $N = \mu^{-1}\{0\} \rightsquigarrow$ singular space: orbifold, stratified space...

Quantization:

Meta-principle: [Q, R] = 0

Problem: Construct S(N/G)..., and $Q_{N/G}$ s.th. [Q, R] = 0

・ロ・・ 日・ ・ ヨ・ ・ ヨ・ うらう

K. Richardson:

G compact Lie group acting on N

 \mathcal{F} regular Riemannian foliation on compact (M, g):

$$N/G\simeq M/ar{\mathcal{F}}$$

Problem:

Solve the [Q, R]-problem for $M/\bar{\mathcal{F}}$

Method:

Use foliated and adapted geometries on (M, \mathcal{F}) as desingularization of $M/\bar{\mathcal{F}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

Foliation atlas on *M*:

 $\phi_i : U_i \ni m \to (x, y) \in \mathbb{R}^p \times \mathbb{R}^q$, *x*: leaf, *y*: transverse $\phi_{ji} := \phi_j \phi_i^{-1}$: verify gluing condition \mathcal{F} : foliation $N_m(M, \mathcal{F}) = T_m M / T_m \mathcal{F}$: normal bundle

Adapted and foliated geometric objects:

 $X|_U = \mathcal{X}^a(x, y)\partial_{x^a} + \mathscr{X}^b(y)\partial_{y^b} \in \Gamma(TM)$: adapted vf $[X]|_U = [\mathscr{X}^b(y)\partial_{y^b}] \in \Gamma(N(M, \mathcal{F}))$ is 'constant along the leaves': foliated vf

'Projections':

Adapted objects O_2 of $M \xrightarrow{p}$ foliated objects $O_1 \xrightarrow{p}$ singular objects O_0 of M/\mathcal{F}

Previous observation:

Adapted world in $M \xrightarrow{p^2 = R}$ singular world of M/\mathcal{F}

Projected constructions:

Construct Q_2 in M, Q_1 , and Q_0 in M/\mathcal{F} s.th.

 $Q_{i-1}[\nabla_{i-1}](S_{i-1})(f_{i-1}) = Q_{i-1}[p\nabla_i](pS_i)(pf_i) = p(Q_i[\nabla_i](S_i)(f_i)),$

which then implies that

$$Q_0[R\nabla_2](RS_2)(Rf_2) = R(Q_2[\nabla_2](S_2)(f_2)),$$

i.e. that

[*Q*, *R*] = 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Tedious constructions in the adapted and foliated worlds:

- Adapt the definitions of Cartan calculus
- Prove that the vital parts of the classical theorems used by the Cartan technique go through
- Extend the proof of existence of EQ
- Verify commutation of all constructions with the projections

THEOREM (P, F. RADOUX, R. WOLAK, 09)

There exist adapted and foliated natural and projectively invariant quantizations that commute with the projection.

イロン 不良 とくほう 不良 とうほ

New ideas:

- Use foliated manifolds as desingularization of arbitrary orbifolds
- Use the foliated EQ to construct a singular EQ on orbifolds

Fixed points of a symmetry action generate singularities: U_i : open ball around O in \mathbb{R}^2 $\Gamma_i = \{ id, \gamma_i, \gamma_i^2 \}$: finite group of isometries γ_i : rotation by angle $2\pi/3$ around O – fixed point O $V_i = U_i/\Gamma_i$: cone – prototype of an orbifold

DEFINITION

An *n*-dimensional Riemannian orbifold V is a topological space with a cover V_i and charts $(U_i, \Gamma_i, q_i), q_i : U_i / \Gamma_i \xrightarrow{\sim} V_i$, (see figure) s. th. the chart changes $\varphi_{ji} : W_i \to W_j, q_j \varphi_{ji} = q_i$, are isometries.

- No universal definitions of geometric objects on orbifolds exist
- Definitions of orbifold smooth maps, DO, symbols, vector fields, connections, differential forms, local isomorphisms... are needed
- Definitions must capture the nature of an orbifold
- Definitions must guarantee a 1-to-1 correspondence between orbifold and foliated geometric objects on the desingularization

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Objective I:

For any Riemannian orbifold V construct a foliated smooth manifold (\tilde{V}, \mathcal{F}) s.th. $\tilde{V}/\mathcal{F} \simeq V$

Step 1:

 (U_i, Γ_i, q_i) : orbifold chart, Γ_i : finite group of isometries $\tilde{U}_i(U_i, \pi_i, O(n))$: PB of orthonormal frames γ_i : acts on U_i , γ_{i*} : acts on \tilde{U}_i $\tilde{U}_i/\Gamma_i = \tilde{V}_i$: smooth manifold – action properly discontinuous (Γ_i finite) and free (figure)

Step 2:

 φ_{ji} : chart-change isometries between U_i s verify $\gamma_{ijk}\varphi_{ki} = \varphi_{kj}\varphi_{ji}$ $[\varphi_{ji*}]$: induced maps between \tilde{V}_i s verify $[\varphi_{ki*}] = [\varphi_{kj*}][\varphi_{ji*}]$ \tilde{V} : glued from \tilde{V}_i s is a smooth manifold O(n): right action on \tilde{U}_i s, \tilde{V}_i s, \tilde{V} \mathcal{F} : regular foliation on \tilde{V}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ◆ ○ ◆ ◆ ○ ◆

V: Riemannian orbifold, (\tilde{V}, \mathcal{F}) : foliated smooth resolution $\mathcal{Q}(\mathcal{F})$: foliated EQ of (\tilde{V}, \mathcal{F})

$$Q_{\mathcal{V}}[\nabla](\mathcal{S}) := p_{\mathcal{D}}^{*-1}\left(\mathcal{Q}(\mathcal{F})[p_{\mathcal{C}}^*\nabla](p_{\mathcal{S}}^*\mathcal{S})\right)$$

THEOREM (P, F. RADOUX, R. WOLAK, 10)

There exists a natural and projectively invariant quantization of orbifolds.

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

Equivariant quantization of supermanifolds

Norbert Poncin Equivariant quantization of orbifolds

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Thank you!

Norbert Poncin Equivariant quantization of orbifolds

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ