EQUIVARIANT QUANTIZATION OF ORBIFOLDS

Norbert Poncin

Mathematics Research Unit
University of Luxembourg
Current Geometry, Levi-Civita Institute, Vietri, 2010

Outline

Equivariant quantization of

- vector spaces
- smooth manifolds
- foliated manifolds
- orbifolds
- supermanifolds

People:
A. Cap, M. Bordemann, C. Duval, H. Gargoubi, J. George, P. Lecomte, P. Mathonet, J.-P. Michel, V. Ovsienko, F. Radoux, J. Silhan, R. Wolak, ..., P

GEOMETRIC CHARACTERIZATION OF QUANTIZATION

Symbol calculus

$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text {loc }} \stackrel{\text { loc }}{\sim} \operatorname{Hom}_{\mathbb{R}}\left(C^{\infty}(U, \bar{E}), C^{\infty}(U, \bar{F})\right)_{\text {loc }}$
$f \in C^{\infty}(U), e \in \bar{E}, x \in U, \xi \in\left(\mathbb{R}^{m}\right)^{*}$

$$
\begin{aligned}
D(f e)= & \sum_{\alpha} D_{\alpha, x}(e) \partial_{x_{1}}^{\alpha_{1}^{1}} \ldots \partial_{x_{m}^{m}}^{\alpha^{m}} f \\
& \simeq \sum_{\alpha} D_{\alpha, x}(e) \xi_{1}^{\alpha^{1}} \ldots \xi_{m}^{\alpha^{m}} \\
& =\sigma_{\text {aff }}(D)(\xi ; \boldsymbol{e})
\end{aligned}
$$

Differential operator $\stackrel{\text { loc }}{\sim}$ polynomial, total affine symbol
$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\mathrm{loc}} \stackrel{\text { loc }}{\sim}$

Symbol calculus

$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text {loc }} \stackrel{\text { loc }}{\sim} \operatorname{Hom}_{\mathbb{R}}\left(C^{\infty}(U, \bar{E}), C^{\infty}(U, \bar{F})\right)_{\text {loc }}$
$f \in C^{\infty}(U), e \in \bar{E}, x \in U, \xi \in\left(\mathbb{R}^{m}\right)^{*}$

$$
\begin{aligned}
D(f e)= & \sum_{\alpha} D_{\alpha, x}(e) \partial_{x_{1}}^{\alpha^{1}} \ldots \partial_{x_{m}^{m}}^{\alpha^{m}} f \\
& \simeq \sum_{\alpha} D_{\alpha} x(e) \xi_{1}^{\alpha^{1}} \ldots \xi_{m}^{\alpha^{m}} \\
& =\sigma_{\text {aff }}(D)(\xi ; e)
\end{aligned}
$$

Differential operator $\stackrel{\text { Ioc }}{\sim}$ polynomial, total affine symbol
$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text {loc }} \stackrel{\text { loc }}{\sim} \sigma_{\text {aff }}(D) \in \Gamma\left(\mathcal{S} T U \otimes E^{*} \otimes F\right)$

Symbol calculus

$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text {loc }} \stackrel{\text { loc }}{\sim} \operatorname{Hom}_{\mathbb{R}}\left(C^{\infty}(U, \bar{E}), C^{\infty}(U, \bar{F})\right)_{\text {loc }}$
$f \in C^{\infty}(U), \boldsymbol{e} \in \bar{E}, x \in U, \xi \in\left(\mathbb{R}^{m}\right)^{*}$

$$
\begin{aligned}
D(f e)= & \sum_{\alpha} D_{\alpha, x}(e) \partial_{x^{1}}^{\alpha^{1}} \ldots \partial_{x_{m}^{m}}^{\alpha^{m}} f \\
& \simeq \sum_{\alpha} D_{\alpha}, x(e) \xi_{1}^{\alpha^{1}} \ldots \xi_{m}^{\alpha^{m}} \\
& =\sigma_{\mathrm{aff}}(D)(\xi ; e)
\end{aligned}
$$

Differential operator $\stackrel{\text { Ioc }}{\sim}$ polynomial, total affine symbol
$D \in \operatorname{Hom}_{\mathbb{R}}(\Gamma(E), \Gamma(F))_{\text {loc }} \stackrel{\text { loc }}{\sim} \sigma_{\text {aff }}(D) \in \Gamma\left(\mathcal{S} T U \otimes E^{*} \otimes F\right)$

Symbol calculus

Example:

Intertwining condition:

$$
\left(L_{X}(T D)-T\left(L_{X} D\right)\right)(\omega)=0
$$

Symbolic representation:

$$
\begin{aligned}
& (X . T)(\eta ; D)(\xi ; \omega)-\langle X, \eta\rangle\left(\left(\tau_{\zeta} T\right)(\eta ; D)\right)(\xi ; \omega) \\
& -\langle X, \xi\rangle\left(\tau_{\zeta}(T(\eta ; D))\right)(\xi ; \omega)+T\left(\eta+\zeta ; X \tau_{\zeta} D\right)(\xi ; \omega) \\
& -T(\eta ; D)\left(\xi+\zeta ; \zeta \wedge i_{X} \omega\right)+T(\eta+\zeta ; D(\cdot+\zeta ; \zeta \wedge i x \cdot))(\xi ; \omega)=0
\end{aligned}
$$

Applications:
Flato-Lichnerowicz, De Wilde-Lecomte: cohomology of vector fields valued in differential forms
P: cohomology of the Nijenhuis-Richardson graded Lie algebra, nonexistence of universal classes

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

$M=\mathbb{R}^{m}, D \in \mathcal{D}(M), \phi:$ coordinate change

$$
D(f)=\sum_{\uparrow \alpha} D_{\alpha, x} \partial_{x}^{\alpha} f \stackrel{\sigma_{\text {aff }}}{\leftrightarrow} \sigma_{\text {aff }}(D)(\xi)=\sum_{\uparrow \alpha} D_{\alpha, x} \xi^{\alpha}
$$

$\stackrel{\sigma_{\text {aff }}}{\leftrightarrow}$

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

$M=\mathbb{R}^{m}, D \in \mathcal{D}(M), \phi:$ coordinate change

$$
\begin{aligned}
D(f)=\sum_{\mathfrak{\imath} \phi}^{\alpha} D_{\alpha, x} \partial_{x}^{\alpha} f \stackrel{\sigma_{\text {aff }}}{\leadsto} \sigma_{\text {aff }}(D)(\xi) & =\sum_{\alpha} D_{\alpha, x} \xi^{\alpha} \\
& =\phi
\end{aligned}
$$

$$
\stackrel{\sigma_{\mathrm{aff}}}{\leftrightarrow}
$$

Non commutative, $\sigma_{\text {aff }}(D)$ not intrinsic, $\sigma(D)$ geometric meaning

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

$M=\mathbb{R}^{m}, D \in \mathcal{D}(M), \phi:$ coordinate change

$$
D(f)=\sum_{\uparrow \alpha} D_{\alpha, x} \partial_{x}^{\alpha} f \stackrel{\sigma_{\text {aff }}}{\leftrightarrow} \sigma_{\text {aff }}(D)(\xi) \underset{\uparrow \phi}{ }=\sum_{\alpha} D_{\alpha, x} \xi^{\alpha}
$$

Non commutative, $\sigma_{\text {aff }}(D)$ not intrinsic, $\sigma(D)$ geometric meaning
Vector space isomorphism:

$$
\sigma_{\text {aff }}^{-1}: \operatorname{Pol}\left(T^{*} M\right)=\Gamma(\mathcal{S} T M)=: \mathcal{S}(M) \rightarrow \mathcal{D}(M)
$$

Nonequivariance (global version):

$$
\exists \phi \in \operatorname{Diff}(M): \sigma_{\text {aff }}^{-1} \circ \phi \neq \phi \circ \sigma_{\text {aff }}^{-1}
$$

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$
Q=\sigma_{\text {tot }}^{-1}: \mathcal{S} \quad(M)=\Gamma(\mathcal{S} T M \quad) \xrightarrow{\text { vs-isom }} \mathcal{D}
$$

such that

$$
\sigma_{\text {tot }}^{-1} \circ L_{X}=\mathcal{L}_{X} \circ \sigma_{\text {tot }}^{-1}, \forall X \in \quad \mathcal{X}(M)
$$

and

$$
\left.\sigma \circ \sigma_{\text {tot }}^{-1}\right|_{\mathcal{S}^{k}(M)}=\operatorname{id}_{S^{k}(M)} \quad \text { (normalization) }
$$

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$
Q=\sigma_{\mathrm{tot}}^{-1}: \mathcal{S}_{\delta=\mu-\lambda}(M)=\Gamma\left(\mathcal{S} T M \otimes \Delta^{\delta} T M\right) \xrightarrow{\text { vs-isom }} \mathcal{D}_{\lambda \mu}(M),
$$

such that

$$
\sigma_{\text {tot }}^{-1} \circ L_{X}=\mathcal{L}_{X} \circ \sigma_{\text {tot }}^{-1}, \forall X \in \quad \mathcal{X}(M)
$$

and

$$
\left.\sigma \circ \sigma_{\text {tot }}^{-1}\right|_{\mathcal{S}^{k}{ }_{\delta}(M)}=\operatorname{id}_{\mathcal{S}^{k}}{ }_{\delta}(M) \quad \text { (normalization) }
$$

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

Definition of an equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$
Q=\sigma_{\mathrm{tot}}^{-1}: \mathcal{S}_{\delta=\mu-\lambda}(M)=\Gamma\left(\mathcal{S} T M \otimes \Delta^{\delta} T M\right) \xrightarrow{\text { vs-isom }} \mathcal{D}_{\lambda \mu}(M),
$$

such that

$$
\sigma_{\text {tot }}^{-1} \circ L_{X}=\mathcal{L}_{X} \circ \sigma_{\text {tot }}^{-1}, \forall X \in \quad \mathcal{X}(M)
$$

and

$$
\left.\sigma \circ \sigma_{\text {tot }}^{-1}\right|_{\mathcal{S}^{k}{ }_{\delta}(M)}=\operatorname{id}_{\mathcal{S}^{k}{ }_{\delta}(M)} \quad \text { (normalization) }
$$

P. Lecomte, P. Mathonet, E. Tousset, 96: $\mathcal{D}_{\lambda \lambda}(M)$ and $\mathcal{D}_{\mu \mu}(M)$ not isomorphic as $\mathcal{X}(M)$-modules

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Nonequivariance (local version):

$$
\exists X \in \mathcal{X}(M): \sigma_{\text {aff }}^{-1} \circ L_{X} \neq \mathcal{L}_{X} \circ \sigma_{\text {aff }}^{-1}
$$

Definition of an \mathfrak{g}-equivariant quantization (EQ) on a vector space [Lecomte, Ovsienko, 99]:

$$
Q=\sigma_{\mathrm{tot}}^{-1}: \mathcal{S}_{\delta=\mu-\lambda}(M)=\Gamma\left(\mathcal{S} T M \otimes \Delta^{\delta} T M\right) \xrightarrow{\text { vs-isom }} \mathcal{D}_{\lambda \mu}(M),
$$

such that

$$
\sigma_{\text {tot }}^{-1} \circ L_{X}=\mathcal{L}_{X} \circ \sigma_{\text {tot }}^{-1}, \forall X \in \mathfrak{g} \subset \mathcal{X}(M)
$$

and

$$
\left.\sigma \circ \sigma_{\text {tot }}^{-1}\right|_{\mathcal{S}^{k}{ }_{\delta}(M)}=\operatorname{id}_{\mathcal{S}^{k}{ }_{\delta}(M)} \quad \text { (normalization) }
$$

P. Lecomte, P. Mathonet, E. Tousset, 96: $\mathcal{D}_{\lambda \lambda}(M)$ and $\mathcal{D}_{\mu \mu}(M)$ not isomorphic as $\mathcal{X}(M)$-modules

EQUIVARIANT QUANTIZATION OF VECTOR SPACES

Some motivations:

- Invariant star-products on $T^{*} M$ obtained as pullbacks by

$$
Q_{\hbar}(P)=\hbar^{k} Q(P), P \in \operatorname{Pol}^{k}\left(T^{*} M\right)
$$

of the associative structure of the space of differential operators

- Classification of spaces of differential operators as modules over Lie algebras of vector fields
- Role of symmetries in relationship between classical and quantum systems - complete geometric characterization of quantization: a flat fixed G-structure on configuration space guarantees existence and uniqueness of a global \mathfrak{g}-equivariant quantization $($ where $\operatorname{Lie}(G)=\mathfrak{g})$

Projective and conformal cases

Maximal Lie subalgebras $\mathfrak{g} \subset \mathcal{X}(M), M=\mathbb{R}^{m}$:

Projective case: $G=\operatorname{PGL}(m+1, \mathbb{R}), \mathfrak{g}=\operatorname{sl}(m+1, \mathbb{R})$ can be embedded as maximal Lie subalgebra sl_{n+1} into $\mathcal{X}_{*}(M)$ (Lecomte, Ovsienko, 99)

Conformal case: $G=\operatorname{SO}(p+1, q+1)(p+q=m)$, $\mathfrak{g}=\mathrm{o}(p+1, q+1)$ can be embedded as maximal Lie subalgebra $\mathrm{o}_{p+1, q+1}$ into $\mathcal{X}_{*}(M)$ (Duval, Lecomte, Ovsienko, 99)

Other cases: ... (Boniver, Mathonet, 01)

The Casimir technique

DIFFERENTIAL OPERATORS ACTING ON TENSOR FIELDS

- Projectively equivariant quantization for differential operators on differential forms [Boniver, Hansoul, Mathonet, P, 02]
- Efficiency of equivariant and standard affine symbol calculus as classification tools for modules of differential operators [P,04]
- Automorphisms and derivations of classical and quantum Poisson algebras [Grabowski, P, 04], [Grabowski, P, 05]

Difference with automorphisms of the classical and the quantum Weyl algebra [Kanel, Kontsevich, 05]

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

$Q:\left(\mathcal{S}_{k p}, L_{X}\right) \rightarrow\left(\mathcal{D}_{p}^{k} \simeq \mathcal{S}_{k p}, \mathcal{L}_{X}\right):$ potential s1 l_{m+1} - EQ
Main observation:

$$
\begin{gathered}
Q \circ C=\mathcal{C} \circ Q \\
C P=\alpha P \Rightarrow \mathcal{C} Q P=\alpha Q P
\end{gathered}
$$

Ideas:

- Diagonalization of C : $\mathcal{S}_{p}^{k}=\mathcal{A}_{p}^{k} \oplus \mathcal{B}_{p}^{k}$, eigenvalues $\alpha_{\rho}^{k}, \beta_{\rho}^{k}$

$$
\text { - } \mathcal{C}-\mathcal{C}=N \underbrace{\left(\mathcal{L}_{X}-L_{x}\right)}_{\mathcal{S}_{p}^{k} \rightarrow \mathcal{S}_{p}^{k-1}}=\frac{1}{m+1}\left(\delta \operatorname{Div} \delta^{*}+\delta^{*} \operatorname{Div} \delta\right)
$$

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

$N: \mathcal{A}_{p}^{k} \ni P \rightarrow N P \in \mathcal{A}_{p}^{k-1}$. Set $Q P=P+Q_{1} P$ and try to define $Q_{1}: \mathcal{A}_{p}^{k} \rightarrow \mathcal{A}_{p}^{k-1}$.

Since

$$
\begin{aligned}
& \alpha_{p}^{k} P+\overbrace{\alpha_{p}^{k} Q_{1} P}^{\in \mathcal{A}_{p}^{k-1}}=Q C P=\mathcal{C} Q P=\mathcal{C}\left(P+Q_{1} P\right)= \\
& (C+N)\left(P+Q_{1} P\right)=\alpha_{p}^{k} P+\overbrace{\alpha_{p}^{k-1} Q_{1} P+N P}^{\in \mathcal{A}_{p}^{k-1}}+\overbrace{N Q_{1} P}^{\in \mathcal{A}_{p}^{k-2}},
\end{aligned}
$$

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

$N: \mathcal{A}_{p}^{k} \ni P \rightarrow N P \in \mathcal{A}_{p}^{k-1}$. Set $Q P=P+Q_{1} P$ and try to define $Q_{1}: \mathcal{A}_{p}^{k} \rightarrow \mathcal{A}_{p}^{k-1}$.

Since

- we get $Q_{1} P=\frac{1}{\alpha_{\rho}^{k}-\alpha_{\rho}^{k-1}} \frac{1}{m+1}\left(\delta \operatorname{Div} \delta^{*} P\right)$
- and have to set $Q P=P+\sum_{\ell=1}^{k} Q_{\ell} P, Q_{\ell}: \mathcal{A}_{p}^{k} \rightarrow \mathcal{A}_{P}^{k-\ell}$

CASIMIR TECHNIQUE FOR DOS ACTING ON FORMS

$N: \mathcal{A}_{p}^{k} \ni P \rightarrow N P \in \mathcal{A}_{p}^{k-1}$. Set $Q P=P+Q_{1} P$ and try to define $Q_{1}: \mathcal{A}_{p}^{k} \rightarrow \mathcal{A}_{p}^{k-1}$.

Since
$\alpha_{P}^{k} P+\overbrace{\alpha_{P}^{k} Q_{1} P}^{\in \mathcal{A}_{0}^{k-1}}=Q C P=\mathcal{C} Q P=\mathcal{C}\left(P+Q_{1} P\right)=$
$(C+N)\left(P+Q_{1} P\right)=\alpha_{p}^{k} P+\overbrace{\alpha_{p}^{k-1} Q_{1} P+N P}^{\in \mathcal{A}_{p}^{k-1}}+\overbrace{N Q_{1} P}^{\in \mathcal{A}_{\rho}^{k-2}}$,

- we get $Q_{1} P=\frac{1}{\alpha_{\rho}^{k}-\alpha_{\rho}^{k-1}} \frac{1}{m+1}\left(\delta \operatorname{Div} \delta^{*} P\right)$
- and have to set $Q P=P+\sum_{\ell=1}^{k} Q_{\ell} P, Q_{\ell}: \mathcal{A}_{p}^{k} \rightarrow \mathcal{A}_{p}^{k-\ell}$

$$
\left.Q\right|_{\mathcal{S}_{\rho}^{k}}=\mathrm{id}+\sum_{\ell=1}^{k} Q_{\ell}, \quad Q_{\ell}=
$$

$$
\left(\frac{1}{m+1}\right)^{\ell}\left(\left(\Pi_{1 \leq i \leq \ell} \frac{1}{\alpha_{p}^{k}-\alpha_{\rho}^{k-1}}\right)\left(\delta \operatorname{Div} \delta^{*}\right)^{\ell}+\left(\Pi_{1 \leq i \leq \ell} \frac{1}{\beta_{D}^{k}-\beta_{P}^{k-1}}\right)\left(\delta^{*} \operatorname{Div} \delta\right)^{\ell}\right)
$$

EQUIVARIANT QUANTIZATION OF SMOOTH MANIFOLDS

Projectively EQ of arbitrary manifolds

Projective structure on a manifold M

Projective structure \rightsquigarrow straight lines \rightsquigarrow geodesics \rightsquigarrow no canonical connection \rightsquigarrow class of connections associated with the same geodesics

Torsion-free linear connections ∇, ∇^{\prime} on M are projectively equivalent, i.e. define the same geometric geodesics, if and only if (H. Weyl)

$$
\nabla_{X}^{\prime} Y-\nabla_{X} Y=\omega(X) Y+\omega(Y) X \in \mathcal{X}(M)
$$

where $X, Y \in \mathcal{X}(M), \omega \in \Omega^{1}(M)$
Projective structure on $M=$ class [∇] of projectively equivalent connections

Projectively EQ of arbitrary manifolds

Quantization associated with a connection (A. Lichnerowicz, star-products)
$D \in \mathcal{D}^{k}(\Gamma(E), \Gamma(F)) \leftrightarrow P \in \Gamma\left(\mathcal{S}^{k} T M \otimes E^{*} \otimes F\right)$
∇ : covariant derivative of E
$\nabla^{k}: \Gamma(E) \ni f \rightarrow \nabla^{k} f \in \Gamma\left(\mathcal{S}^{k} T^{*} M \otimes E\right)$: iterated symmetrized
$Q_{\mathrm{aff}}(\nabla) P: \Gamma(E) \ni f \rightarrow\left(Q_{\mathrm{aff}}(\nabla) P\right) f=i_{P}\left(\nabla^{\kappa} f\right) \in \Gamma(F)$

Projectively EQ of arbitrary manifolds

Towards natural and projectively invariant quantization

- There is no $Q: \mathcal{S} \rightarrow \mathcal{D}$ such that

$$
Q \circ \phi^{*}=\phi^{*} \circ Q, \forall \phi \in \operatorname{Diff}(M)
$$

i.e.

$$
\left(Q\left(\phi^{*} P\right)\right)\left(\phi^{*} f\right)=\phi^{*}((Q P)(f)), \forall \phi \in \operatorname{Diff}(M)
$$

Projectively EQ of arbitrary manifolds

Towards natural and projectively invariant quantization

- There is no $Q: \mathcal{S} \rightarrow \mathcal{D}$ such that

$$
Q \circ \phi^{*}=\phi^{*} \circ Q, \forall \phi \in \operatorname{Diff}(M)
$$

i.e.

$$
\left(Q\left(\phi^{*} P\right)\right)\left(\phi^{*} f\right)=\phi^{*}((Q P)(f)), \forall \phi \in \operatorname{Diff}(M)
$$

- Is there $Q(\nabla): \mathcal{S} \rightarrow \mathcal{D}$ such that

$$
\left(Q\left(\phi^{*} \nabla\right)\left(\phi^{*} P\right)\right)\left(\phi^{*} f\right)=\phi^{*}((Q(\nabla) P)(f)),
$$

for all local diffeomorphisms ϕ ?

Projectively EQ of arbitrary manifolds

Remarks

- Example of the gauge principle
- Q - problem: no solution $Q(\nabla)$ - problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)

Projectively EQ of arbitrary manifolds

Remarks

- Example of the gauge principle
- Q - problem: no solution $Q(\nabla)$ - problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)
- Group PGL $(\mathrm{m}+1, \mathbb{R})$ does not preserve ∇, but the flows of $X \in \operatorname{sl}_{m+1} \subset \mathcal{X}_{*}\left(\mathbb{R}^{m}\right)$ preserve [∇]: the solution $Q=\sigma_{\mathrm{sl}_{m+1}}^{-1}$ of Lecomte and Ovsienko is intelligible,

Projectively EQ of arbitrary manifolds

Remarks

- Example of the gauge principle
- Q - problem: no solution $Q(\nabla)$ - problem: several solutions, standard ordering prescription, Weyl ordering prescription (half-densities)
- Group PGL $(\mathrm{m}+1, \mathbb{R})$ does not preserve ∇, but the flows of $X \in \operatorname{sl}_{m+1} \subset \mathcal{X}_{*}\left(\mathbb{R}^{m}\right)$ preserve $[\nabla]$: the solution $Q=\sigma_{\mathrm{sl}_{m+1}}^{-1}$ of Lecomte and Ovsienko is intelligible, if $Q=Q[\nabla]$
- Additional requirement (uniqueness): $Q=Q[\nabla]$, i.e. Q is projectively invariant

Projectively EQ of arbitrary manifolds

Definition (Lecomte 01):
A natural and projectively invariant quantization is a family

$$
Q_{M}: \mathcal{C}(M) \times \mathcal{S}_{\delta}(M) \rightarrow \mathcal{D}_{\lambda \mu}(M)
$$

indexed by smooth manifolds M, s.th., for any $\nabla \in \mathcal{C}(M)$,

$$
Q_{M}[\nabla]: \mathcal{S}_{\delta}(M) \rightarrow \mathcal{D}_{\lambda \mu}(M)
$$

is a vector space isomorphism that verifies
(1) the usual normalization condition
(2) for any local diffeomorphism ϕ of M,

$$
\left(Q_{M}\left[\phi^{*} \nabla\right]\left(\phi^{*} P\right)\right)\left(\phi^{*} f\right)=\phi^{*}\left(\left(Q_{M}[\nabla] P\right)(f)\right)
$$

$$
\forall P \in \mathcal{S}_{\delta}(M), \forall f \in \Gamma\left(\Delta^{\lambda} T M\right)
$$

(3) $Q_{M}[\nabla]$ is independent of $\nabla \in[\nabla]$

Projectively EQ of arbitrary manifolds

Remarks:

- Generalization: If Q is a natural and projectively invariant quantization, then $Q_{\mathbb{R}^{m}}\left[\nabla_{0}\right]$ (∇_{0} : canonical flat connection) is an $\operatorname{sl}(m+1, \mathbb{R})$-equivariant quantization
- Functorial formulation: M. Bordemann wrote this definition in the language of natural bundles and operators (see I. Kolář, P. W. Michor, J. Slovǎk)
- Existence results: M. Bordemann, 02; P. Mathonet, F. Radoux, 05; S. Hansoul, 06; A. Cap, J. Silhan, 09
- Techniques: Thomas-Whitehead connections, Cartan connections, tractor calculus

The Thomas-Whitehead technique

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}
Lift the complex situation on M to the simpler situation on \tilde{M} :

$$
Q[\nabla](P)(f)
$$

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}
Lift the complex situation on M to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \rightarrow \tilde{\nabla}, P \rightarrow \tilde{P}$, and $f \rightarrow \tilde{f}$

$$
Q[\nabla](P)(f)
$$

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}
Lift the complex situation on M to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \rightarrow \tilde{\nabla}, P \rightarrow \tilde{P}$, and $f \rightarrow \tilde{f}$

$$
Q[\nabla](P)(f) \quad Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})
$$

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}
Lift the complex situation on M to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \rightarrow \tilde{\nabla}, P \rightarrow \tilde{P}$, and $f \rightarrow \tilde{f}$
- Define a quantization $Q[\nabla]$ by

$$
(Q[\nabla](P)(f))^{\tilde{x}}:=Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})
$$

TOY MODEL

Example $M:=S^{m}$
$g \in G:=\mathrm{GL}(m+1, \mathbb{R})$
All g preserve the canonical connection of \mathbb{R}^{m+1}, the induced ϕ_{g} do usually not preserve the canonical LC-connection on S^{m}
$\tilde{M}:=\mathbb{R}^{m+1} \backslash\{0\} \rightarrow S^{m}=: M$ is a bundle with typical fiber \mathbb{R}_{0}^{+}
Lift the complex situation on M to the simpler situation on \tilde{M} :

- Construct natural lifts $\nabla \rightarrow \tilde{\nabla}, P \rightarrow \tilde{P}$, and $f \rightarrow \tilde{f}$
- Define a quantization $Q[\nabla]$ by

$$
(Q[\nabla](P)(f)):=Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f})
$$

- Check if $\tilde{\nabla}$ only depends upon [∇]

TOY MODEL

The point is:

TOY MODEL

The point is:

- Standard affine quantization

$$
Q_{\mathrm{aff}}(\nabla)(P)(f)=i_{P}(\nabla \cdot f)
$$

is natural, but not projectively invariant

TOY MODEL

The point is:

- Standard affine quantization

$$
Q_{\mathrm{aff}}(\nabla)(P)(f)=i_{P}(\nabla \cdot f)
$$

is natural, but not projectively invariant

- Naturality of all lifts and naturality of $Q_{\text {aff }}$ entails naturality of Q :

$$
\begin{aligned}
(Q[\nabla](P)(f)))^{\tilde{}} & =Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f}) \\
\left(Q\left[\phi_{g}^{*} \nabla\right]\left(\phi_{g}^{*} P\right)\left(\phi_{g}^{*} f\right)\right)^{\tilde{m}} & =Q_{\mathrm{aff}}\left(g^{*} \tilde{\nabla}\right)\left(g^{*} \tilde{P}\right)\left(g^{*} \tilde{f}\right) \\
& =g^{*} Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f}) \\
& =g^{*}(Q[\nabla](P)(f))^{-} \\
& =\left(\phi_{g}^{*} Q[\nabla](P)(f)\right)^{-}
\end{aligned}
$$

TOY MODEL

The point is:

- Standard affine quantization

$$
Q_{\mathrm{aff}}(\nabla)(P)(f)=i_{P}(\nabla \cdot f)
$$

is natural, but not projectively invariant

- Naturality of all lifts and naturality of $Q_{\text {aff }}$ entails naturality of Q :

$$
\begin{aligned}
(Q[\nabla](P)(f)) & =Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f}) \\
\left(Q\left[\phi_{g}^{*} \nabla\right]\left(\phi_{g}^{*} P\right)\left(\phi_{g}^{*} f\right)\right)^{\tilde{m}} & =Q_{\mathrm{aff}}\left(g^{*} \tilde{\nabla}\right)\left(g^{*} \tilde{P}\right)\left(g^{*} \tilde{f}\right) \\
& =g^{*} Q_{\mathrm{aff}}(\tilde{\nabla})(\tilde{P})(\tilde{f}) \\
& =g^{*}(Q[\nabla](P)(f))^{-} \\
& =\left(\phi_{g}^{*} Q[\nabla](P)(f)\right)^{-}
\end{aligned}
$$

- Projective invariance of $\tilde{\nabla}$ entails projective invariance of Q

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

$$
\begin{aligned}
& \Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}, \\
& \mathrm{GL}(m, \mathbb{R}) \times \mathbb{R} \quad \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}: \\
& \text { rank } 1 \quad \text { bundle of } \quad 1-\operatorname{densities~over~} M
\end{aligned}
$$

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

$$
\begin{aligned}
& \Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}_{0}^{+}, \\
& \mathrm{GL}(m, \mathbb{R}) \times \mathbb{R}_{0}^{+} \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}_{0}^{+}:
\end{aligned}
$$

rank 1 affine bundle of positive 1 - densities over M

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

- $\tilde{M}:=\Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}_{0}^{+}$,
$\mathrm{GL}(m, \mathbb{R}) \times \mathbb{R}_{0}^{+} \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}_{0}^{+}$:
rank 1 affine bundle of positive 1 - densities over M

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

- $\tilde{M}:=\Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}_{0}^{+}$,
$\mathrm{GL}(m, \mathbb{R}) \times \mathbb{R}_{0}^{+} \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}_{0}^{+}:$
rank 1 affine bundle of positive 1 - densities over M
- $\tilde{M} \times \mathbb{R}_{0}^{+} \ni([u, r], s) \rightarrow \rho_{s}[u, r]=[u, r s] \in \tilde{M}: \mathbb{R}_{0}^{+}-\mathrm{pb}$

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

- $\tilde{M}:=\Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}_{0}^{+}$,
$\mathrm{GL}(m, \mathbb{R}) \times \mathbb{R}_{0}^{+} \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}_{0}^{+}$:
rank 1 affine bundle of positive 1 - densities over M
- $\tilde{M} \times \mathbb{R}_{0}^{+} \ni([u, r], s) \rightarrow \rho_{s}[u, r]=[u, r s] \in \tilde{M}: \mathbb{R}_{0}^{+}-\mathrm{pb}$

$$
\begin{aligned}
& \Delta^{\lambda} T M=\tilde{M} \times_{\mathbb{R}_{0}^{+}} \mathbb{R} \\
& \mathbb{R}_{0}^{+} \times \mathbb{R} \ni(s, t) \rightarrow s . t=s^{\lambda} t:
\end{aligned}
$$

line bundle of λ-densities over M

General case

Extension of the S^{m}-construction to an arbitrary $M, \operatorname{dim} M=m$

- $\tilde{M}:=\Delta^{1} T M=P^{1} M \times_{\mathrm{GL}(m, \mathbb{R})} \mathbb{R}_{0}^{+}$,
$\mathrm{GL}(m, \mathbb{R}) \times \mathbb{R}_{0}^{+} \ni(g, r) \rightarrow g \cdot r=|\operatorname{det} g|^{-1} r \in \mathbb{R}_{0}^{+}$:
rank 1 affine bundle of positive 1 - densities over M
- $\tilde{M} \times \mathbb{R}_{0}^{+} \ni([u, r], s) \rightarrow \rho_{s}[u, r]=[u, r s] \in \tilde{M}: \mathbb{R}_{0}^{+}-\mathrm{pb}$

$$
\begin{aligned}
& \Delta^{\lambda} T M=\tilde{M} \times_{\mathbb{R}_{0}^{+}} \mathbb{R} \\
& \mathbb{R}_{0}^{+} \times \mathbb{R} \ni(s, t) \rightarrow s . t=s^{\lambda} t:
\end{aligned}
$$

line bundle of λ-densities over M
$f \in \Gamma\left(\Delta^{\lambda} T M\right) \leftrightarrow \tilde{f} \in C^{\infty}(\tilde{M})_{\mathbb{R}_{0}^{+}}$

GENERAL CASE

- Lifts \tilde{P} and $\tilde{\nabla}$ are technical

Essential remark: Natural and projectively invariant lift $\tilde{\nabla}$ is a connection of some known type

General case

- Lifts \tilde{P} and $\tilde{\nabla}$ are technical

Essential remark: Natural and projectively invariant lift $\tilde{\nabla}$ is a connection of some known type

Study of projective equivalence of connections

- Origins: Goes back to the twenties and thirties
- Objective: Associate a unique connection to each projective structure [∇]
- First answer: Thomas-Whitehead projective connection (T.Y. Thomas, J.H.C. Whitehead, O. Veblen)
- Second answer: Cartan projective connection (E. Cartan)

Thomas-Whitehead connections

- A Thomas-Whitehead projective connection is a torsion-free linear connection $\tilde{\nabla}$ over \tilde{M}, such that
(1) $\tilde{\nabla} \mathcal{E}=\frac{1}{m+1} \mathrm{id}$
(2) $\rho_{S *}\left(\tilde{\nabla}_{X} Y\right)=\tilde{\nabla}_{\rho_{s *} X} \rho_{s *} Y, \quad \forall X, Y \in \mathcal{X}(\tilde{M})$
- Bordemann's connection is a Thomas-Whitehead connection
- S. Hansoul extended the work of M. Bordemann from tensor densities to sections of arbitrary vector bundles associated with the principle bundle of linear frames

The Cartan technique

CARTAN CONNECTIONS

- $P^{2} M=\left\{\mathrm{j}_{0}^{2}(\psi) \mid \psi: 0 \in U \subset \mathbb{R}^{m} \rightarrow M, \operatorname{det} \psi_{* 0} \neq 0\right\}:$

2nd order frame bundle

$$
\mathcal{G}_{m}^{2}=\left\{\mathrm{j}_{0}^{2}(f) \mid f: 0 \in U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, f(0)=0, \operatorname{det} f_{* 0} \neq 0\right\}:
$$

structure group

- $G=\operatorname{PGL}(m+1, \mathbb{R})$ acts on $\mathbb{R} P^{m}$
$H=G_{\left[e_{m+1}\right]}=$
$\left\{\left(\begin{array}{ll}A & 0 \\ \alpha & a\end{array}\right): A \in \mathrm{GL}(m, \mathbb{R}), \alpha \in \mathbb{R}^{m *}, a \neq 0\right\} / \mathbb{R}_{0} \mathrm{id}$
acts locally on \mathbb{R}^{m} by $\mathbb{R}^{m} \supset U \ni Z \mapsto \frac{A Z}{\alpha Z+a} \in \mathbb{R}^{m}: H \subset \mathcal{G}_{m}^{2}$

CARTAN CONNECTIONS

- Proposition:

Reductions $P(M, H)$ of $P^{2} M$ to $H \subset \mathcal{G}_{m}^{2}$ are 1-to-1 with projective structures [∇]

Theorem:
To every projective structure $[\nabla] \simeq P(M, H)$ is associated a unique normal Cartan connection ω

- Definition:
G : Lie group, H : closed subgroup, $\mathfrak{g}, \mathfrak{h}$: Lie algebras
$P=P(M, H)$: PB s.th. $\operatorname{dim} M=\operatorname{dim} G / H$
A Cartan connection on P is a 1-form $\omega \in \Omega^{1}(P) \otimes \mathfrak{g}$ s.th.
- $\mathfrak{r}_{s}^{*} \omega=\operatorname{Ad}\left(s^{-1}\right) \omega \quad\left(\mathfrak{r}_{s}\right.$ right action of $\left.s \in H\right)$
- $\omega\left(X^{h}\right)=h \quad(h \in \mathfrak{h})$
- $\omega_{u}: T_{u} P \rightarrow \mathfrak{g} \quad(u \in P)$ is a vector space isomorphism (no horizontal SB)

Existence of EQ via Cartan connections

$P=P(M, H)(m \rightsquigarrow \tilde{M})$: projective structure
ω (m) $\tilde{\nabla}$): normal Cartan connection

Existence of EQ via Cartan connections

$P=P(M, H)(A m) \tilde{M})$: projective structure
ω ($m \rightarrow s$) : normal Cartan connection

- Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on
$P=P(M, H)$:
$\mathcal{S}_{\delta}^{k}(M)=\Gamma\left(\mathcal{S}^{k} T M \otimes \Delta^{\delta} T M\right)=C^{\infty}\left(P^{1} M, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
$\Gamma\left(\Delta^{\lambda} T M\right)=C^{\infty}\left(P^{1} M, \Delta^{\lambda} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
(V, ρ) : representation of $\mathrm{GL}(m, \mathbb{R})$
$C^{\infty}\left(P^{1} M, V\right)_{\mathrm{GL}(m, \mathbb{R})}$

Existence of EQ via Cartan connections

$P=P(M, H)(A m) \tilde{M})$: projective structure
ω ($m \rightarrow s$) : normal Cartan connection

- Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on
$P=P(M, H)$:
$\mathcal{S}_{\delta}^{k}(M)=\Gamma\left(\mathcal{S}^{k} T M \otimes \Delta^{\delta} T M\right)=C^{\infty}\left(P^{1} M, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
$\Gamma\left(\Delta^{\lambda} T M\right)=C^{\infty}\left(P^{1} M, \Delta^{\lambda} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
(V, ρ) : representation of $\mathrm{GL}(m, \mathbb{R})$
$C^{\infty}\left(P^{1} M, V\right)_{\mathrm{GL}(m, \mathbb{R})}$

Existence of EQ via Cartan connections

$P=P(M, H)(m \rightarrow \tilde{M})$: projective structure
ω (m) $\tilde{\nabla}$): normal Cartan connection

- Lifts \tilde{S} of symbols and \tilde{f} of densities to objects on
$P=P(M, H)$:
$\mathcal{S}_{\delta}^{k}(M)=\Gamma\left(\mathcal{S}^{k} T M \otimes \Delta^{\delta} T M\right)=C^{\infty}\left(P^{1} M, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
$\Gamma\left(\Delta^{\lambda} T M\right)=C^{\infty}\left(P^{1} M, \Delta^{\lambda} \mathbb{R}^{m}\right)_{\mathrm{GL}(m, \mathbb{R})}$
(V, ρ) : representation of $\mathrm{GL}(m, \mathbb{R})$
$C^{\infty}\left(P^{1} M, V\right)_{\mathrm{GL}(m, \mathbb{R})} \simeq C^{\infty}(P, V)_{H}$

Existence of EQ via Cartan connections

- Idea:
$\left(Q_{M}[\nabla](S)(f)\right)^{\tilde{\prime}}=Q_{\text {aff }}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)$

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{-}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{\kappa} \tilde{f}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$

Existence of EQ via Cartan connections

- Idea:
$\left(Q_{M}[\nabla](S)(f)\right)^{\tilde{m}}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)$
- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=$

Existence of EQ via Cartan connections

- Idea:

$$
\left(Q_{M}[\nabla](S)(f)\right) \tilde{)}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k \tilde{f}}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=(L$
g) $(u) \in V$

Existence of EQ via Cartan connections

- Idea:

$$
\left(Q_{M}[\nabla](S)(f)\right) \tilde{)}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k \tilde{f}}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)} \quad g\right)(u) \in V$

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{2}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)} \quad g\right)(u) \in V \\
& \omega_{u} \in \operatorname{Isom}\left(\mathrm{~T}_{\mathrm{u}} \mathrm{P}, \mathfrak{g}\right), \mathfrak{g}=\operatorname{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \operatorname{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m *} \ni v
\end{aligned}
$$

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{2}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)=\omega^{-1} v} g\right)(u) \in V$
$\omega_{u} \in \operatorname{Isom}\left(\mathrm{~T}_{\mathrm{u}} \mathrm{P}, \mathfrak{g}\right), \mathfrak{g}=\mathrm{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \mathrm{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m *} \ni v$

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{2}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)=\omega^{-1} v} g\right)(u) \in V$
$\omega_{u} \in \operatorname{Isom}\left(\mathrm{~T}_{\mathrm{u}} \mathrm{P}, \mathfrak{g}\right), \mathfrak{g}=\mathrm{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \mathrm{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m *} \ni v$
$\left(\nabla^{\omega}\right)^{k}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m *} \otimes V\right)$: iterated symmetrized

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{2}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)=\omega^{-1} v} g\right)(u) \in V$
$\omega_{u} \in \operatorname{Isom}\left(\mathrm{~T}_{\mathrm{u}} \mathrm{P}, \mathfrak{g}\right), \mathfrak{g}=\mathrm{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \mathrm{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m *} \ni v$
$\left(\nabla^{\omega}\right)^{k}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m *} \otimes V\right)$: iterated symmetrized
- Problem:
$\tilde{f} \in C^{\infty}\left(P, \Delta^{\lambda} \mathbb{R}^{m}\right)_{H},\left(\nabla^{\omega}\right)^{k} \tilde{f} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m *} \otimes \Delta^{\lambda} \mathbb{R}^{m}\right)$
$\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta=\mu-\lambda} \mathbb{R}^{m}\right)_{H}$
$i_{\tilde{s}}\left(\left(\nabla^{\omega}\right)^{k \tilde{f}}\right) \in C^{\infty}\left(P, \Delta^{\mu} \mathbb{R}^{m}\right)$

Existence of EQ via Cartan connections

- Idea:

$$
\left.\left(Q_{M}[\nabla](S)(f)\right)\right)^{2}=Q_{\mathrm{aff}}(\omega)(\tilde{S})(\tilde{f})=i_{\tilde{S}}\left(\left(\nabla^{\omega}\right)^{k \tilde{f}}\right)
$$

- Derivative associated with ω :
$\nabla^{\omega}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathbb{R}^{m *} \otimes V\right)$
$g \in C^{\infty}(P, V), u \in P, v \in \mathbb{R}^{m}$
$\left(\nabla^{\omega} g\right)(u)(v)=\left(L_{\mathcal{X}(P) \ni X(\omega, v)=\omega^{-1} v} g\right)(u) \in V$
$\omega_{u} \in \operatorname{Isom}\left(\mathrm{~T}_{\mathrm{u}} \mathrm{P}, \mathfrak{g}\right), \mathfrak{g}=\mathrm{sl}(m+1, \mathbb{R}) \simeq \mathbb{R}^{m} \oplus \mathrm{gl}(m, \mathbb{R}) \oplus \mathbb{R}^{m *} \ni v$
$\left(\nabla^{\omega}\right)^{k}: C^{\infty}(P, V) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m *} \otimes V\right)$: iterated symmetrized
- Problem:
$\tilde{f} \in C^{\infty}\left(P, \Delta^{\lambda} \mathbb{R}^{m}\right)_{H},\left(\nabla^{\omega}\right)^{\kappa} \tilde{f} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m *} \otimes \Delta^{\lambda} \mathbb{R}^{m}\right)$ $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta=\mu-\lambda} \mathbb{R}^{m}\right)_{H}$
$i_{\tilde{s}}\left(\left(\nabla^{\omega}\right)^{k} \tilde{f}\right) \in C^{\infty}\left(P, \Delta^{\mu} \mathbb{R}^{m}\right):$ not H-equivariant

Existence of EQ via Cartan connections

- Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{H}$

Existence of EQ via Cartan connections

- Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{H}$ Div $^{\omega}: C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k-1} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)$

Existence of EQ via Cartan connections

- Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{H}$
Div $^{\omega}: C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k-1} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)$
e_{ℓ} : canonical basis of $\mathbb{R}^{m}, \varepsilon^{\ell}$: dual basis in $\mathbb{R}^{m *}$
$\operatorname{div}\left(\sum_{\ell} \boldsymbol{X}^{\ell} \boldsymbol{e}_{\ell}\right)=\sum_{j} i_{\varepsilon^{j}} \partial_{\chi^{j}}\left(\sum_{\ell} \boldsymbol{X}^{\ell} \boldsymbol{e}_{\ell}\right)$

Existence of EQ via Cartan connections

- Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{H}$
Div $^{\omega}: C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k-1} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)$
e_{ℓ} : canonical basis of $\mathbb{R}^{m}, \varepsilon^{\ell}$: dual basis in $\mathbb{R}^{m *}$
$\operatorname{div}\left(\sum_{\ell} X^{\ell} \boldsymbol{e}_{\ell}\right)=\sum_{j} i_{\varepsilon^{j}} \partial_{x^{j}}\left(\sum_{\ell} X^{\ell} \boldsymbol{e}_{\ell}\right)$
$\operatorname{Div}^{\omega} \tilde{S}=\sum_{j} i_{\varepsilon_{j}} \nabla_{e_{j}}^{\omega} \tilde{S}$

Existence of EQ via Cartan connections

- Solution:

Add lower degree terms to $\tilde{S} \in C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)_{H}$ $\operatorname{Div}^{\omega}: C^{\infty}\left(P, \mathcal{S}^{k} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right) \rightarrow C^{\infty}\left(P, \mathcal{S}^{k-1} \mathbb{R}^{m} \otimes \Delta^{\delta} \mathbb{R}^{m}\right)$
e_{ℓ} : canonical basis of $\mathbb{R}^{m}, \varepsilon^{\ell}$: dual basis in $\mathbb{R}^{m *}$ $\operatorname{div}\left(\sum_{\ell} X^{\ell} \boldsymbol{e}_{\ell}\right)=\sum_{j} i_{\varepsilon} \partial_{X^{j}}\left(\sum_{\ell} X^{\ell} \boldsymbol{e}_{\ell}\right)$
$\operatorname{Div}^{\omega} \tilde{S}=\sum_{j} i_{\varepsilon j} \nabla_{e_{j}}^{\omega} \tilde{S}$

- Theorem:

For non critical δ,

$$
\left(Q_{M}[\nabla](S)(f)\right) \tilde{}=\sum_{\ell=0}^{k} c_{k \ell} i_{\left(\operatorname{Div}^{\omega}\right)^{\ell} \tilde{S}}\left(\left(\nabla^{\omega}\right)^{k-\ell} \tilde{f}\right)
$$

defines a natural projectively invariant quantization, if the $c_{k \ell}$ have some precise values

Quantization of singular spaces

QUANTIZATION AND REDUCTION

E. Noether's theorem: Symmetries $\rightsquigarrow 1$ st integrals \rightsquigarrow reduction of $\left(q_{1}, \ldots, p_{n}\right)$.

Reduced phase space: $N / G, N=\mu^{-1}\{0\} \rightsquigarrow$ singular space: orbifold, stratified space...

Quantization:

Meta-principle: $[Q, R]=0$
Problem: Construct $S(N / G) \ldots$, and $Q_{N / G}$ s.th. $[Q, R]=0$

FOLIATIONS AND DESINGULARIZATION

K. Richardson:

G compact Lie group acting on N
\mathcal{F} regular Riemannian foliation on compact (M, g) :

$$
N / G \simeq M / \overline{\mathcal{F}}
$$

Problem:

Solve the $[Q, R]$-problem for $M / \overline{\mathcal{F}}$
Method:
Use foliated and adapted geometries on (M, \mathcal{F}) as desingularization of $M / \overline{\mathcal{F}}$

ADAPTED AND FOLIATED GEOMETRIES

Foliation atlas on M :
$\phi_{i}: U_{i} \ni m \rightarrow(x, y) \in \mathbb{R}^{p} \times \mathbb{R}^{q}, \quad x$: leaf, $y:$ transverse $\phi_{j i}:=\phi_{j} \phi_{i}^{-1}$: verify gluing condition
\mathcal{F} : foliation
$N_{m}(M, \mathcal{F})=T_{m} M / T_{m} \mathcal{F}$: normal bundle
Adapted and foliated geometric objects:
$\left.X\right|_{U}=\mathcal{X}^{a}(x, y) \partial_{x^{a}}+\mathscr{X}^{b}(y) \partial_{y^{b}} \in \Gamma(T M)$: adapted vf
$[X] \mid u=\left[\mathscr{X}^{b}(y) \partial_{y^{b}}\right] \in \Gamma(N(M, \mathcal{F}))$ is 'constant along the leaves': foliated vf
'Projections':
Adapted objects O_{2} of $M \xrightarrow{p}$ foliated objects $\mathrm{O}_{1} \xrightarrow{p}$ singular objects O_{0} of M / F

Singular quantization

Previous observation:
Adapted world in $M \xrightarrow{p^{2}=R}$ singular world of M / \mathcal{F}

Projected constructions:
Construct Q_{2} in M, Q_{1}, and Q_{0} in M / \mathcal{F} s.th.
$Q_{i-1}\left[\nabla_{i-1}\right]\left(S_{i-1}\right)\left(f_{i-1}\right)=Q_{i-1}\left[p \nabla_{i}\right]\left(p S_{i}\right)\left(p f_{i}\right)=p\left(Q_{i}\left[\nabla_{i}\right]\left(S_{i}\right)\left(f_{i}\right)\right)$,
which then implies that

$$
Q_{0}\left[R \nabla_{2}\right]\left(R S_{2}\right)\left(R f_{2}\right)=R\left(Q_{2}\left[\nabla_{2}\right]\left(S_{2}\right)\left(f_{2}\right)\right),
$$

i.e. that

$$
[Q, R]=0
$$

ADAPTED AND FOLIATED QUANTIZATIONS

Tedious constructions in the adapted and foliated worlds:

- Adapt the definitions of Cartan calculus
- Prove that the vital parts of the classical theorems used by the Cartan technique go through
- Extend the proof of existence of EQ
- Verify commutation of all constructions with the projections

Theorem (P, F. Radoux, R. Wolak, 09)
There exist adapted and foliated natural and projectively invariant quantizations that commute with the projection.

RIEMANNIAN ORBIFOLDS

New ideas:

- Use foliated manifolds as desingularization of arbitrary orbifolds
- Use the foliated EQ to construct a singular EQ on orbifolds

Fixed points of a symmetry action generate singularities:
U_{i} : open ball around O in \mathbb{R}^{2}
$\Gamma_{i}=\left\{\mathrm{id}, \gamma_{i}, \gamma_{i}^{2}\right\}$: finite group of isometries
γ_{i} : rotation by angle $2 \pi / 3$ around O - fixed point O
$V_{i}=U_{i} / \Gamma_{i}$: cone - prototype of an orbifold

DEFINITION

An n-dimensional Riemannian orbifold V is a topological space with a cover V_{i} and charts $\left(U_{i}, \Gamma_{i}, q_{i}\right), q_{i}: U_{i} / \Gamma_{i} \xrightarrow{\sim} V_{i}$, (see figure) s. th. the chart changes $\varphi_{j i}: W_{i} \rightarrow W_{j}, q_{j} \varphi_{j i}=q_{i}$, are isometries.

ORBIFOLD GEOMETRIC OBJECTS

- No universal definitions of geometric objects on orbifolds exist
- Definitions of orbifold smooth maps, DO, symbols, vector fields, connections, differential forms, local isomorphisms... are needed
- Definitions must capture the nature of an orbifold
- Definitions must guarantee a 1-to-1 correspondence between orbifold and foliated geometric objects on the desingularization

DESINGULARIZATION OF AN ORBIFOLD

Objective I:
For any Riemannian orbifold V construct a foliated smooth manifold (\tilde{V}, \mathcal{F}) s.th. $\tilde{V} / \mathcal{F} \simeq V$

Step 1:

$\left(U_{i}, \Gamma_{i}, q_{i}\right)$: orbifold chart, Γ_{i} : finite group of isometries
$\tilde{U}_{i}\left(U_{i}, \pi_{i}, O(n)\right)$: PB of orthonormal frames
γ_{i} : acts on $U_{i}, \quad \gamma_{i *}$: acts on \tilde{U}_{i}
$\tilde{U}_{i} / \Gamma_{i}=\tilde{V}_{i}$: smooth manifold - action properly discontinuous (Γ_{i}
finite) and free (figure)

RESOLUTION OF AN ORBIFOLD

Step 2:

$\varphi_{j j}$: chart-change isometries between $U_{i} \mathrm{~S}$ verify $\gamma_{i j k} \varphi_{k i}=\varphi_{k j} \varphi_{j i}$
[$\left.\varphi_{j i *}\right]$: induced maps between $\tilde{V}_{i} s$ verify $\left[\varphi_{k i *}\right]=\left[\varphi_{k j *}\right]\left[\varphi_{j i *}\right]$
\tilde{V} : glued from \tilde{V}_{i} s is a smooth manifold
$O(n)$: right action on $\tilde{U}_{i} \mathrm{~s}, \tilde{V}_{i} \mathrm{~s}, \tilde{V}$
\mathcal{F} : regular foliation on \tilde{V}

EQUIVARIANT QUANTIZATION OF ORBIFOLDS

V : Riemannian orbifold, (\tilde{V}, \mathcal{F}) : foliated smooth resolution $\mathcal{Q}(\mathcal{F})$: foliated EQ of (\tilde{V}, \mathcal{F})

$$
Q_{V}[\nabla](S):=p_{\mathcal{D}}^{*-1}\left(\mathcal{Q}(\mathcal{F})\left[p_{\mathcal{C}}^{*} \nabla\right]\left(p_{\mathcal{S}}^{*} \mathcal{S}\right)\right)
$$

Theorem (P, F. Radoux, R. Wolak, 10)

There exists a natural and projectively invariant quantization of orbifolds.

Outlook

Equivariant quantization of supermanifolds

Thank you!

